Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{\left(x-2\right)^{2}+\left(y-5\right)^{2}}\right)^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x^{2}-4x+4+\left(y-5\right)^{2}}\right)^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
\left(\sqrt{x^{2}-4x+4+y^{2}-10y+25}\right)^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-5\right)^{2}.
\left(\sqrt{x^{2}-4x+29+y^{2}-10y}\right)^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Add 4 and 25 to get 29.
x^{2}-4x+29+y^{2}-10y=\left(\sqrt{\left(x+1\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Calculate \sqrt{x^{2}-4x+29+y^{2}-10y} to the power of 2 and get x^{2}-4x+29+y^{2}-10y.
x^{2}-4x+29+y^{2}-10y=\left(\sqrt{x^{2}+2x+1+\left(y-4\right)^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}-4x+29+y^{2}-10y=\left(\sqrt{x^{2}+2x+1+y^{2}-8y+16}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-4\right)^{2}.
x^{2}-4x+29+y^{2}-10y=\left(\sqrt{x^{2}+2x+17+y^{2}-8y}\right)^{2}
Add 1 and 16 to get 17.
x^{2}-4x+29+y^{2}-10y=x^{2}+2x+17+y^{2}-8y
Calculate \sqrt{x^{2}+2x+17+y^{2}-8y} to the power of 2 and get x^{2}+2x+17+y^{2}-8y.
x^{2}-4x+29+y^{2}-10y-x^{2}=2x+17+y^{2}-8y
Subtract x^{2} from both sides.
-4x+29+y^{2}-10y=2x+17+y^{2}-8y
Combine x^{2} and -x^{2} to get 0.
-4x+29+y^{2}-10y-2x=17+y^{2}-8y
Subtract 2x from both sides.
-6x+29+y^{2}-10y=17+y^{2}-8y
Combine -4x and -2x to get -6x.
-6x+y^{2}-10y=17+y^{2}-8y-29
Subtract 29 from both sides.
-6x+y^{2}-10y=-12+y^{2}-8y
Subtract 29 from 17 to get -12.
-6x-10y=-12+y^{2}-8y-y^{2}
Subtract y^{2} from both sides.
-6x-10y=-12-8y
Combine y^{2} and -y^{2} to get 0.
-6x=-12-8y+10y
Add 10y to both sides.
-6x=-12+2y
Combine -8y and 10y to get 2y.
-6x=2y-12
The equation is in standard form.
\frac{-6x}{-6}=\frac{2y-12}{-6}
Divide both sides by -6.
x=\frac{2y-12}{-6}
Dividing by -6 undoes the multiplication by -6.
x=-\frac{y}{3}+2
Divide -12+2y by -6.
\sqrt{\left(-\frac{y}{3}+2-2\right)^{2}+\left(y-5\right)^{2}}=\sqrt{\left(-\frac{y}{3}+2+1\right)^{2}+\left(y-4\right)^{2}}
Substitute -\frac{y}{3}+2 for x in the equation \sqrt{\left(x-2\right)^{2}+\left(y-5\right)^{2}}=\sqrt{\left(x+1\right)^{2}+\left(y-4\right)^{2}}.
\frac{1}{3}\left(y^{2}+9\left(y-5\right)^{2}\right)^{\frac{1}{2}}=\frac{1}{3}\left(225-90y+10y^{2}\right)^{\frac{1}{2}}
Simplify. The value x=-\frac{y}{3}+2 satisfies the equation.
x=-\frac{y}{3}+2
Equation \sqrt{\left(x-2\right)^{2}+\left(y-5\right)^{2}}=\sqrt{\left(x+1\right)^{2}+\left(y-4\right)^{2}} has a unique solution.
\left(\sqrt{\left(x-2\right)^{2}+\left(y-5\right)^{2}}\right)^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x^{2}-4x+4+\left(y-5\right)^{2}}\right)^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
\left(\sqrt{x^{2}-4x+4+y^{2}-10y+25}\right)^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-5\right)^{2}.
\left(\sqrt{x^{2}-4x+29+y^{2}-10y}\right)^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Add 4 and 25 to get 29.
x^{2}-4x+29+y^{2}-10y=\left(\sqrt{\left(x+1\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Calculate \sqrt{x^{2}-4x+29+y^{2}-10y} to the power of 2 and get x^{2}-4x+29+y^{2}-10y.
x^{2}-4x+29+y^{2}-10y=\left(\sqrt{x^{2}+2x+1+\left(y-4\right)^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}-4x+29+y^{2}-10y=\left(\sqrt{x^{2}+2x+1+y^{2}-8y+16}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-4\right)^{2}.
x^{2}-4x+29+y^{2}-10y=\left(\sqrt{x^{2}+2x+17+y^{2}-8y}\right)^{2}
Add 1 and 16 to get 17.
x^{2}-4x+29+y^{2}-10y=x^{2}+2x+17+y^{2}-8y
Calculate \sqrt{x^{2}+2x+17+y^{2}-8y} to the power of 2 and get x^{2}+2x+17+y^{2}-8y.
x^{2}-4x+29+y^{2}-10y-y^{2}=x^{2}+2x+17-8y
Subtract y^{2} from both sides.
x^{2}-4x+29-10y=x^{2}+2x+17-8y
Combine y^{2} and -y^{2} to get 0.
x^{2}-4x+29-10y+8y=x^{2}+2x+17
Add 8y to both sides.
x^{2}-4x+29-2y=x^{2}+2x+17
Combine -10y and 8y to get -2y.
-4x+29-2y=x^{2}+2x+17-x^{2}
Subtract x^{2} from both sides.
-4x+29-2y=2x+17
Combine x^{2} and -x^{2} to get 0.
29-2y=2x+17+4x
Add 4x to both sides.
29-2y=6x+17
Combine 2x and 4x to get 6x.
-2y=6x+17-29
Subtract 29 from both sides.
-2y=6x-12
Subtract 29 from 17 to get -12.
\frac{-2y}{-2}=\frac{6x-12}{-2}
Divide both sides by -2.
y=\frac{6x-12}{-2}
Dividing by -2 undoes the multiplication by -2.
y=6-3x
Divide -12+6x by -2.
\sqrt{\left(x-2\right)^{2}+\left(6-3x-5\right)^{2}}=\sqrt{\left(x+1\right)^{2}+\left(6-3x-4\right)^{2}}
Substitute 6-3x for y in the equation \sqrt{\left(x-2\right)^{2}+\left(y-5\right)^{2}}=\sqrt{\left(x+1\right)^{2}+\left(y-4\right)^{2}}.
\left(5-10x+10x^{2}\right)^{\frac{1}{2}}=\left(5-10x+10x^{2}\right)^{\frac{1}{2}}
Simplify. The value y=6-3x satisfies the equation.
y=6-3x
Equation \sqrt{\left(x-2\right)^{2}+\left(y-5\right)^{2}}=\sqrt{\left(x+1\right)^{2}+\left(y-4\right)^{2}} has a unique solution.