Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{\left(m-2\right)^{2}}\right)^{2}=\left(m+1\right)^{2}
Square both sides of the equation.
\left(\sqrt{m^{2}-4m+4}\right)^{2}=\left(m+1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-2\right)^{2}.
m^{2}-4m+4=\left(m+1\right)^{2}
Calculate \sqrt{m^{2}-4m+4} to the power of 2 and get m^{2}-4m+4.
m^{2}-4m+4=m^{2}+2m+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(m+1\right)^{2}.
m^{2}-4m+4-m^{2}=2m+1
Subtract m^{2} from both sides.
-4m+4=2m+1
Combine m^{2} and -m^{2} to get 0.
-4m+4-2m=1
Subtract 2m from both sides.
-6m+4=1
Combine -4m and -2m to get -6m.
-6m=1-4
Subtract 4 from both sides.
-6m=-3
Subtract 4 from 1 to get -3.
m=\frac{-3}{-6}
Divide both sides by -6.
m=\frac{1}{2}
Reduce the fraction \frac{-3}{-6} to lowest terms by extracting and canceling out -3.
\sqrt{\left(\frac{1}{2}-2\right)^{2}}=\frac{1}{2}+1
Substitute \frac{1}{2} for m in the equation \sqrt{\left(m-2\right)^{2}}=m+1.
\frac{3}{2}=\frac{3}{2}
Simplify. The value m=\frac{1}{2} satisfies the equation.
m=\frac{1}{2}
Equation \sqrt{\left(m-2\right)^{2}}=m+1 has a unique solution.