Solve for m
m=\frac{1}{2}=0.5
Share
Copied to clipboard
\left(\sqrt{\left(m-2\right)^{2}}\right)^{2}=\left(m+1\right)^{2}
Square both sides of the equation.
\left(\sqrt{m^{2}-4m+4}\right)^{2}=\left(m+1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-2\right)^{2}.
m^{2}-4m+4=\left(m+1\right)^{2}
Calculate \sqrt{m^{2}-4m+4} to the power of 2 and get m^{2}-4m+4.
m^{2}-4m+4=m^{2}+2m+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(m+1\right)^{2}.
m^{2}-4m+4-m^{2}=2m+1
Subtract m^{2} from both sides.
-4m+4=2m+1
Combine m^{2} and -m^{2} to get 0.
-4m+4-2m=1
Subtract 2m from both sides.
-6m+4=1
Combine -4m and -2m to get -6m.
-6m=1-4
Subtract 4 from both sides.
-6m=-3
Subtract 4 from 1 to get -3.
m=\frac{-3}{-6}
Divide both sides by -6.
m=\frac{1}{2}
Reduce the fraction \frac{-3}{-6} to lowest terms by extracting and canceling out -3.
\sqrt{\left(\frac{1}{2}-2\right)^{2}}=\frac{1}{2}+1
Substitute \frac{1}{2} for m in the equation \sqrt{\left(m-2\right)^{2}}=m+1.
\frac{3}{2}=\frac{3}{2}
Simplify. The value m=\frac{1}{2} satisfies the equation.
m=\frac{1}{2}
Equation \sqrt{\left(m-2\right)^{2}}=m+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}