Solve for t
t = \frac{4 \sqrt{2461} + 320}{39} \approx 13.293176105
t = \frac{320 - 4 \sqrt{2461}}{39} \approx 3.117080306
Share
Copied to clipboard
\left(\sqrt{\left(8-t-\frac{3}{5}t\right)^{2}+\left(\frac{4}{5}\right)^{2}}\right)^{2}=t^{2}
Square both sides of the equation.
\left(\sqrt{\left(8-\frac{8}{5}t\right)^{2}+\left(\frac{4}{5}\right)^{2}}\right)^{2}=t^{2}
Combine -t and -\frac{3}{5}t to get -\frac{8}{5}t.
\left(\sqrt{64-\frac{128}{5}t+\frac{64}{25}t^{2}+\left(\frac{4}{5}\right)^{2}}\right)^{2}=t^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-\frac{8}{5}t\right)^{2}.
\left(\sqrt{64-\frac{128}{5}t+\frac{64}{25}t^{2}+\frac{16}{25}}\right)^{2}=t^{2}
Calculate \frac{4}{5} to the power of 2 and get \frac{16}{25}.
\left(\sqrt{\frac{1616}{25}-\frac{128}{5}t+\frac{64}{25}t^{2}}\right)^{2}=t^{2}
Add 64 and \frac{16}{25} to get \frac{1616}{25}.
\frac{1616}{25}-\frac{128}{5}t+\frac{64}{25}t^{2}=t^{2}
Calculate \sqrt{\frac{1616}{25}-\frac{128}{5}t+\frac{64}{25}t^{2}} to the power of 2 and get \frac{1616}{25}-\frac{128}{5}t+\frac{64}{25}t^{2}.
\frac{1616}{25}-\frac{128}{5}t+\frac{64}{25}t^{2}-t^{2}=0
Subtract t^{2} from both sides.
\frac{1616}{25}-\frac{128}{5}t+\frac{39}{25}t^{2}=0
Combine \frac{64}{25}t^{2} and -t^{2} to get \frac{39}{25}t^{2}.
\frac{39}{25}t^{2}-\frac{128}{5}t+\frac{1616}{25}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-\frac{128}{5}\right)±\sqrt{\left(-\frac{128}{5}\right)^{2}-4\times \frac{39}{25}\times \frac{1616}{25}}}{2\times \frac{39}{25}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{39}{25} for a, -\frac{128}{5} for b, and \frac{1616}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-\frac{128}{5}\right)±\sqrt{\frac{16384}{25}-4\times \frac{39}{25}\times \frac{1616}{25}}}{2\times \frac{39}{25}}
Square -\frac{128}{5} by squaring both the numerator and the denominator of the fraction.
t=\frac{-\left(-\frac{128}{5}\right)±\sqrt{\frac{16384}{25}-\frac{156}{25}\times \frac{1616}{25}}}{2\times \frac{39}{25}}
Multiply -4 times \frac{39}{25}.
t=\frac{-\left(-\frac{128}{5}\right)±\sqrt{\frac{16384}{25}-\frac{252096}{625}}}{2\times \frac{39}{25}}
Multiply -\frac{156}{25} times \frac{1616}{25} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
t=\frac{-\left(-\frac{128}{5}\right)±\sqrt{\frac{157504}{625}}}{2\times \frac{39}{25}}
Add \frac{16384}{25} to -\frac{252096}{625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=\frac{-\left(-\frac{128}{5}\right)±\frac{8\sqrt{2461}}{25}}{2\times \frac{39}{25}}
Take the square root of \frac{157504}{625}.
t=\frac{\frac{128}{5}±\frac{8\sqrt{2461}}{25}}{2\times \frac{39}{25}}
The opposite of -\frac{128}{5} is \frac{128}{5}.
t=\frac{\frac{128}{5}±\frac{8\sqrt{2461}}{25}}{\frac{78}{25}}
Multiply 2 times \frac{39}{25}.
t=\frac{\frac{8\sqrt{2461}}{25}+\frac{128}{5}}{\frac{78}{25}}
Now solve the equation t=\frac{\frac{128}{5}±\frac{8\sqrt{2461}}{25}}{\frac{78}{25}} when ± is plus. Add \frac{128}{5} to \frac{8\sqrt{2461}}{25}.
t=\frac{4\sqrt{2461}+320}{39}
Divide \frac{128}{5}+\frac{8\sqrt{2461}}{25} by \frac{78}{25} by multiplying \frac{128}{5}+\frac{8\sqrt{2461}}{25} by the reciprocal of \frac{78}{25}.
t=\frac{-\frac{8\sqrt{2461}}{25}+\frac{128}{5}}{\frac{78}{25}}
Now solve the equation t=\frac{\frac{128}{5}±\frac{8\sqrt{2461}}{25}}{\frac{78}{25}} when ± is minus. Subtract \frac{8\sqrt{2461}}{25} from \frac{128}{5}.
t=\frac{320-4\sqrt{2461}}{39}
Divide \frac{128}{5}-\frac{8\sqrt{2461}}{25} by \frac{78}{25} by multiplying \frac{128}{5}-\frac{8\sqrt{2461}}{25} by the reciprocal of \frac{78}{25}.
t=\frac{4\sqrt{2461}+320}{39} t=\frac{320-4\sqrt{2461}}{39}
The equation is now solved.
\sqrt{\left(8-\frac{4\sqrt{2461}+320}{39}-\frac{3}{5}\times \frac{4\sqrt{2461}+320}{39}\right)^{2}+\left(\frac{4}{5}\right)^{2}}=\frac{4\sqrt{2461}+320}{39}
Substitute \frac{4\sqrt{2461}+320}{39} for t in the equation \sqrt{\left(8-t-\frac{3}{5}t\right)^{2}+\left(\frac{4}{5}\right)^{2}}=t.
\frac{320}{39}+\frac{4}{39}\times 2461^{\frac{1}{2}}=\frac{4}{39}\times 2461^{\frac{1}{2}}+\frac{320}{39}
Simplify. The value t=\frac{4\sqrt{2461}+320}{39} satisfies the equation.
\sqrt{\left(8-\frac{320-4\sqrt{2461}}{39}-\frac{3}{5}\times \frac{320-4\sqrt{2461}}{39}\right)^{2}+\left(\frac{4}{5}\right)^{2}}=\frac{320-4\sqrt{2461}}{39}
Substitute \frac{320-4\sqrt{2461}}{39} for t in the equation \sqrt{\left(8-t-\frac{3}{5}t\right)^{2}+\left(\frac{4}{5}\right)^{2}}=t.
\frac{320}{39}-\frac{4}{39}\times 2461^{\frac{1}{2}}=\frac{320}{39}-\frac{4}{39}\times 2461^{\frac{1}{2}}
Simplify. The value t=\frac{320-4\sqrt{2461}}{39} satisfies the equation.
t=\frac{4\sqrt{2461}+320}{39} t=\frac{320-4\sqrt{2461}}{39}
List all solutions of \sqrt{\left(-\frac{3t}{5}-t+8\right)^{2}+\frac{16}{25}}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}