Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{\left(2-1\right)^{2}+\left(y-2\right)^{2}}\right)^{2}=y^{2}
Square both sides of the equation.
\left(\sqrt{1^{2}+\left(y-2\right)^{2}}\right)^{2}=y^{2}
Subtract 1 from 2 to get 1.
\left(\sqrt{1+\left(y-2\right)^{2}}\right)^{2}=y^{2}
Calculate 1 to the power of 2 and get 1.
\left(\sqrt{1+y^{2}-4y+4}\right)^{2}=y^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
\left(\sqrt{5+y^{2}-4y}\right)^{2}=y^{2}
Add 1 and 4 to get 5.
5+y^{2}-4y=y^{2}
Calculate \sqrt{5+y^{2}-4y} to the power of 2 and get 5+y^{2}-4y.
5+y^{2}-4y-y^{2}=0
Subtract y^{2} from both sides.
5-4y=0
Combine y^{2} and -y^{2} to get 0.
-4y=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
y=\frac{-5}{-4}
Divide both sides by -4.
y=\frac{5}{4}
Fraction \frac{-5}{-4} can be simplified to \frac{5}{4} by removing the negative sign from both the numerator and the denominator.
\sqrt{\left(2-1\right)^{2}+\left(\frac{5}{4}-2\right)^{2}}=\frac{5}{4}
Substitute \frac{5}{4} for y in the equation \sqrt{\left(2-1\right)^{2}+\left(y-2\right)^{2}}=y.
\frac{5}{4}=\frac{5}{4}
Simplify. The value y=\frac{5}{4} satisfies the equation.
y=\frac{5}{4}
Equation \sqrt{\left(y-2\right)^{2}+1}=y has a unique solution.