Solve for y
y = \frac{5}{4} = 1\frac{1}{4} = 1.25
Graph
Share
Copied to clipboard
\left(\sqrt{\left(2-1\right)^{2}+\left(y-2\right)^{2}}\right)^{2}=y^{2}
Square both sides of the equation.
\left(\sqrt{1^{2}+\left(y-2\right)^{2}}\right)^{2}=y^{2}
Subtract 1 from 2 to get 1.
\left(\sqrt{1+\left(y-2\right)^{2}}\right)^{2}=y^{2}
Calculate 1 to the power of 2 and get 1.
\left(\sqrt{1+y^{2}-4y+4}\right)^{2}=y^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
\left(\sqrt{5+y^{2}-4y}\right)^{2}=y^{2}
Add 1 and 4 to get 5.
5+y^{2}-4y=y^{2}
Calculate \sqrt{5+y^{2}-4y} to the power of 2 and get 5+y^{2}-4y.
5+y^{2}-4y-y^{2}=0
Subtract y^{2} from both sides.
5-4y=0
Combine y^{2} and -y^{2} to get 0.
-4y=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
y=\frac{-5}{-4}
Divide both sides by -4.
y=\frac{5}{4}
Fraction \frac{-5}{-4} can be simplified to \frac{5}{4} by removing the negative sign from both the numerator and the denominator.
\sqrt{\left(2-1\right)^{2}+\left(\frac{5}{4}-2\right)^{2}}=\frac{5}{4}
Substitute \frac{5}{4} for y in the equation \sqrt{\left(2-1\right)^{2}+\left(y-2\right)^{2}}=y.
\frac{5}{4}=\frac{5}{4}
Simplify. The value y=\frac{5}{4} satisfies the equation.
y=\frac{5}{4}
Equation \sqrt{\left(y-2\right)^{2}+1}=y has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}