\sqrt { ( 1,8 : 2 \cdot 2 ) : [ 10 \cdot ( 0,6 : 2 + 1,8 - 0,1 ) ] }
Evaluate
0,3
Factor
\frac{3}{2 \cdot 5} = 0.3
Share
Copied to clipboard
\sqrt{\frac{\frac{18}{20}\times 2}{10\left(\frac{0,6}{2}+1,8-0,1\right)}}
Expand \frac{1,8}{2} by multiplying both numerator and the denominator by 10.
\sqrt{\frac{\frac{9}{10}\times 2}{10\left(\frac{0,6}{2}+1,8-0,1\right)}}
Reduce the fraction \frac{18}{20} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{\frac{9\times 2}{10}}{10\left(\frac{0,6}{2}+1,8-0,1\right)}}
Express \frac{9}{10}\times 2 as a single fraction.
\sqrt{\frac{\frac{18}{10}}{10\left(\frac{0,6}{2}+1,8-0,1\right)}}
Multiply 9 and 2 to get 18.
\sqrt{\frac{\frac{9}{5}}{10\left(\frac{0,6}{2}+1,8-0,1\right)}}
Reduce the fraction \frac{18}{10} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{\frac{9}{5}}{10\left(\frac{6}{20}+1,8-0,1\right)}}
Expand \frac{0,6}{2} by multiplying both numerator and the denominator by 10.
\sqrt{\frac{\frac{9}{5}}{10\left(\frac{3}{10}+1,8-0,1\right)}}
Reduce the fraction \frac{6}{20} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{\frac{9}{5}}{10\left(\frac{3}{10}+\frac{9}{5}-0,1\right)}}
Convert decimal number 1,8 to fraction \frac{18}{10}. Reduce the fraction \frac{18}{10} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{\frac{9}{5}}{10\left(\frac{3}{10}+\frac{18}{10}-0,1\right)}}
Least common multiple of 10 and 5 is 10. Convert \frac{3}{10} and \frac{9}{5} to fractions with denominator 10.
\sqrt{\frac{\frac{9}{5}}{10\left(\frac{3+18}{10}-0,1\right)}}
Since \frac{3}{10} and \frac{18}{10} have the same denominator, add them by adding their numerators.
\sqrt{\frac{\frac{9}{5}}{10\left(\frac{21}{10}-0,1\right)}}
Add 3 and 18 to get 21.
\sqrt{\frac{\frac{9}{5}}{10\left(\frac{21}{10}-\frac{1}{10}\right)}}
Convert decimal number 0,1 to fraction \frac{1}{10}.
\sqrt{\frac{\frac{9}{5}}{10\times \frac{21-1}{10}}}
Since \frac{21}{10} and \frac{1}{10} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{\frac{9}{5}}{10\times \frac{20}{10}}}
Subtract 1 from 21 to get 20.
\sqrt{\frac{\frac{9}{5}}{10\times 2}}
Divide 20 by 10 to get 2.
\sqrt{\frac{\frac{9}{5}}{20}}
Multiply 10 and 2 to get 20.
\sqrt{\frac{9}{5\times 20}}
Express \frac{\frac{9}{5}}{20} as a single fraction.
\sqrt{\frac{9}{100}}
Multiply 5 and 20 to get 100.
\frac{3}{10}
Rewrite the square root of the division \frac{9}{100} as the division of square roots \frac{\sqrt{9}}{\sqrt{100}}. Take the square root of both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}