Solve for x
x = \frac{\sqrt{89} + 3}{10} \approx 1.243398113
Graph
Share
Copied to clipboard
\left(\sqrt{\left(\frac{5}{2}\right)^{2}-\left(x-\frac{3}{2}\right)^{2}}\right)^{2}=\left(2x\right)^{2}
Square both sides of the equation.
\left(\sqrt{\frac{25}{4}-\left(x-\frac{3}{2}\right)^{2}}\right)^{2}=\left(2x\right)^{2}
Calculate \frac{5}{2} to the power of 2 and get \frac{25}{4}.
\left(\sqrt{\frac{25}{4}-\left(x^{2}-3x+\frac{9}{4}\right)}\right)^{2}=\left(2x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{3}{2}\right)^{2}.
\left(\sqrt{\frac{25}{4}-x^{2}+3x-\frac{9}{4}}\right)^{2}=\left(2x\right)^{2}
To find the opposite of x^{2}-3x+\frac{9}{4}, find the opposite of each term.
\left(\sqrt{4-x^{2}+3x}\right)^{2}=\left(2x\right)^{2}
Subtract \frac{9}{4} from \frac{25}{4} to get 4.
4-x^{2}+3x=\left(2x\right)^{2}
Calculate \sqrt{4-x^{2}+3x} to the power of 2 and get 4-x^{2}+3x.
4-x^{2}+3x=2^{2}x^{2}
Expand \left(2x\right)^{2}.
4-x^{2}+3x=4x^{2}
Calculate 2 to the power of 2 and get 4.
4-x^{2}+3x-4x^{2}=0
Subtract 4x^{2} from both sides.
4-5x^{2}+3x=0
Combine -x^{2} and -4x^{2} to get -5x^{2}.
-5x^{2}+3x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\left(-5\right)\times 4}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 3 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-5\right)\times 4}}{2\left(-5\right)}
Square 3.
x=\frac{-3±\sqrt{9+20\times 4}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-3±\sqrt{9+80}}{2\left(-5\right)}
Multiply 20 times 4.
x=\frac{-3±\sqrt{89}}{2\left(-5\right)}
Add 9 to 80.
x=\frac{-3±\sqrt{89}}{-10}
Multiply 2 times -5.
x=\frac{\sqrt{89}-3}{-10}
Now solve the equation x=\frac{-3±\sqrt{89}}{-10} when ± is plus. Add -3 to \sqrt{89}.
x=\frac{3-\sqrt{89}}{10}
Divide -3+\sqrt{89} by -10.
x=\frac{-\sqrt{89}-3}{-10}
Now solve the equation x=\frac{-3±\sqrt{89}}{-10} when ± is minus. Subtract \sqrt{89} from -3.
x=\frac{\sqrt{89}+3}{10}
Divide -3-\sqrt{89} by -10.
x=\frac{3-\sqrt{89}}{10} x=\frac{\sqrt{89}+3}{10}
The equation is now solved.
\sqrt{\left(\frac{5}{2}\right)^{2}-\left(\frac{3-\sqrt{89}}{10}-\frac{3}{2}\right)^{2}}=2\times \frac{3-\sqrt{89}}{10}
Substitute \frac{3-\sqrt{89}}{10} for x in the equation \sqrt{\left(\frac{5}{2}\right)^{2}-\left(x-\frac{3}{2}\right)^{2}}=2x.
\frac{1}{5}\times 89^{\frac{1}{2}}-\frac{3}{5}=\frac{3}{5}-\frac{1}{5}\times 89^{\frac{1}{2}}
Simplify. The value x=\frac{3-\sqrt{89}}{10} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{\left(\frac{5}{2}\right)^{2}-\left(\frac{\sqrt{89}+3}{10}-\frac{3}{2}\right)^{2}}=2\times \frac{\sqrt{89}+3}{10}
Substitute \frac{\sqrt{89}+3}{10} for x in the equation \sqrt{\left(\frac{5}{2}\right)^{2}-\left(x-\frac{3}{2}\right)^{2}}=2x.
\frac{1}{5}\times 89^{\frac{1}{2}}+\frac{3}{5}=\frac{1}{5}\times 89^{\frac{1}{2}}+\frac{3}{5}
Simplify. The value x=\frac{\sqrt{89}+3}{10} satisfies the equation.
x=\frac{\sqrt{89}+3}{10}
Equation \sqrt{\frac{25}{4}-\left(x-\frac{3}{2}\right)^{2}}=2x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}