Evaluate
5\sqrt{3}\approx 8.660254038
Share
Copied to clipboard
\sqrt{\frac{\left(5\sqrt{3}\right)^{2}}{2^{2}}+\left(\frac{15}{2}\right)^{2}}
To raise \frac{5\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\sqrt{\frac{\left(5\sqrt{3}\right)^{2}}{2^{2}}+\frac{225}{4}}
Calculate \frac{15}{2} to the power of 2 and get \frac{225}{4}.
\sqrt{\frac{\left(5\sqrt{3}\right)^{2}}{4}+\frac{225}{4}}
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\sqrt{\frac{\left(5\sqrt{3}\right)^{2}+225}{4}}
Since \frac{\left(5\sqrt{3}\right)^{2}}{4} and \frac{225}{4} have the same denominator, add them by adding their numerators.
\sqrt{\frac{5^{2}\left(\sqrt{3}\right)^{2}+225}{4}}
Expand \left(5\sqrt{3}\right)^{2}.
\sqrt{\frac{25\left(\sqrt{3}\right)^{2}+225}{4}}
Calculate 5 to the power of 2 and get 25.
\sqrt{\frac{25\times 3+225}{4}}
The square of \sqrt{3} is 3.
\sqrt{\frac{75+225}{4}}
Multiply 25 and 3 to get 75.
\sqrt{\frac{300}{4}}
Add 75 and 225 to get 300.
\sqrt{75}
Divide 300 by 4 to get 75.
5\sqrt{3}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}