Evaluate
\frac{5\sqrt{10}}{8}\approx 1.976423538
Share
Copied to clipboard
\sqrt{\left(\frac{3}{8}+\frac{10}{8}+\frac{3}{2}\right)\left(2+\frac{1}{2}\right)\left(1-\frac{1}{2}\right)}
Least common multiple of 8 and 4 is 8. Convert \frac{3}{8} and \frac{5}{4} to fractions with denominator 8.
\sqrt{\left(\frac{3+10}{8}+\frac{3}{2}\right)\left(2+\frac{1}{2}\right)\left(1-\frac{1}{2}\right)}
Since \frac{3}{8} and \frac{10}{8} have the same denominator, add them by adding their numerators.
\sqrt{\left(\frac{13}{8}+\frac{3}{2}\right)\left(2+\frac{1}{2}\right)\left(1-\frac{1}{2}\right)}
Add 3 and 10 to get 13.
\sqrt{\left(\frac{13}{8}+\frac{12}{8}\right)\left(2+\frac{1}{2}\right)\left(1-\frac{1}{2}\right)}
Least common multiple of 8 and 2 is 8. Convert \frac{13}{8} and \frac{3}{2} to fractions with denominator 8.
\sqrt{\frac{13+12}{8}\left(2+\frac{1}{2}\right)\left(1-\frac{1}{2}\right)}
Since \frac{13}{8} and \frac{12}{8} have the same denominator, add them by adding their numerators.
\sqrt{\frac{25}{8}\left(2+\frac{1}{2}\right)\left(1-\frac{1}{2}\right)}
Add 13 and 12 to get 25.
\sqrt{\frac{25}{8}\left(\frac{4}{2}+\frac{1}{2}\right)\left(1-\frac{1}{2}\right)}
Convert 2 to fraction \frac{4}{2}.
\sqrt{\frac{25}{8}\times \frac{4+1}{2}\left(1-\frac{1}{2}\right)}
Since \frac{4}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\sqrt{\frac{25}{8}\times \frac{5}{2}\left(1-\frac{1}{2}\right)}
Add 4 and 1 to get 5.
\sqrt{\frac{25\times 5}{8\times 2}\left(1-\frac{1}{2}\right)}
Multiply \frac{25}{8} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{125}{16}\left(1-\frac{1}{2}\right)}
Do the multiplications in the fraction \frac{25\times 5}{8\times 2}.
\sqrt{\frac{125}{16}\left(\frac{2}{2}-\frac{1}{2}\right)}
Convert 1 to fraction \frac{2}{2}.
\sqrt{\frac{125}{16}\times \frac{2-1}{2}}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{125}{16}\times \frac{1}{2}}
Subtract 1 from 2 to get 1.
\sqrt{\frac{125\times 1}{16\times 2}}
Multiply \frac{125}{16} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{125}{32}}
Do the multiplications in the fraction \frac{125\times 1}{16\times 2}.
\frac{\sqrt{125}}{\sqrt{32}}
Rewrite the square root of the division \sqrt{\frac{125}{32}} as the division of square roots \frac{\sqrt{125}}{\sqrt{32}}.
\frac{5\sqrt{5}}{\sqrt{32}}
Factor 125=5^{2}\times 5. Rewrite the square root of the product \sqrt{5^{2}\times 5} as the product of square roots \sqrt{5^{2}}\sqrt{5}. Take the square root of 5^{2}.
\frac{5\sqrt{5}}{4\sqrt{2}}
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
\frac{5\sqrt{5}\sqrt{2}}{4\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{5\sqrt{5}}{4\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{5\sqrt{5}\sqrt{2}}{4\times 2}
The square of \sqrt{2} is 2.
\frac{5\sqrt{10}}{4\times 2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{5\sqrt{10}}{8}
Multiply 4 and 2 to get 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}