Evaluate
\frac{\sqrt{17}}{2}\approx 2.061552813
Share
Copied to clipboard
\sqrt{\left(\frac{3}{4}\right)^{2}\left(\sqrt{2}\right)^{2}+\left(\frac{5}{4}\sqrt{2}\right)^{2}}
Expand \left(\frac{3}{4}\sqrt{2}\right)^{2}.
\sqrt{\frac{9}{16}\left(\sqrt{2}\right)^{2}+\left(\frac{5}{4}\sqrt{2}\right)^{2}}
Calculate \frac{3}{4} to the power of 2 and get \frac{9}{16}.
\sqrt{\frac{9}{16}\times 2+\left(\frac{5}{4}\sqrt{2}\right)^{2}}
The square of \sqrt{2} is 2.
\sqrt{\frac{9}{8}+\left(\frac{5}{4}\sqrt{2}\right)^{2}}
Multiply \frac{9}{16} and 2 to get \frac{9}{8}.
\sqrt{\frac{9}{8}+\left(\frac{5}{4}\right)^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(\frac{5}{4}\sqrt{2}\right)^{2}.
\sqrt{\frac{9}{8}+\frac{25}{16}\left(\sqrt{2}\right)^{2}}
Calculate \frac{5}{4} to the power of 2 and get \frac{25}{16}.
\sqrt{\frac{9}{8}+\frac{25}{16}\times 2}
The square of \sqrt{2} is 2.
\sqrt{\frac{9}{8}+\frac{25}{8}}
Multiply \frac{25}{16} and 2 to get \frac{25}{8}.
\sqrt{\frac{17}{4}}
Add \frac{9}{8} and \frac{25}{8} to get \frac{17}{4}.
\frac{\sqrt{17}}{\sqrt{4}}
Rewrite the square root of the division \sqrt{\frac{17}{4}} as the division of square roots \frac{\sqrt{17}}{\sqrt{4}}.
\frac{\sqrt{17}}{2}
Calculate the square root of 4 and get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}