Evaluate
0
Factor
0
Share
Copied to clipboard
\sqrt{\left(1-\frac{1}{5}-\frac{5}{6}\right)\times \frac{1}{7}\left(\frac{5}{4}-\frac{18}{8}+1\right)\times \frac{2}{5}}
Divide 3 by 3 to get 1.
\sqrt{\left(\frac{5}{5}-\frac{1}{5}-\frac{5}{6}\right)\times \frac{1}{7}\left(\frac{5}{4}-\frac{18}{8}+1\right)\times \frac{2}{5}}
Convert 1 to fraction \frac{5}{5}.
\sqrt{\left(\frac{5-1}{5}-\frac{5}{6}\right)\times \frac{1}{7}\left(\frac{5}{4}-\frac{18}{8}+1\right)\times \frac{2}{5}}
Since \frac{5}{5} and \frac{1}{5} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\left(\frac{4}{5}-\frac{5}{6}\right)\times \frac{1}{7}\left(\frac{5}{4}-\frac{18}{8}+1\right)\times \frac{2}{5}}
Subtract 1 from 5 to get 4.
\sqrt{\left(\frac{24}{30}-\frac{25}{30}\right)\times \frac{1}{7}\left(\frac{5}{4}-\frac{18}{8}+1\right)\times \frac{2}{5}}
Least common multiple of 5 and 6 is 30. Convert \frac{4}{5} and \frac{5}{6} to fractions with denominator 30.
\sqrt{\frac{24-25}{30}\times \frac{1}{7}\left(\frac{5}{4}-\frac{18}{8}+1\right)\times \frac{2}{5}}
Since \frac{24}{30} and \frac{25}{30} have the same denominator, subtract them by subtracting their numerators.
\sqrt{-\frac{1}{30}\times \frac{1}{7}\left(\frac{5}{4}-\frac{18}{8}+1\right)\times \frac{2}{5}}
Subtract 25 from 24 to get -1.
\sqrt{\frac{-1}{30\times 7}\left(\frac{5}{4}-\frac{18}{8}+1\right)\times \frac{2}{5}}
Multiply -\frac{1}{30} times \frac{1}{7} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{-1}{210}\left(\frac{5}{4}-\frac{18}{8}+1\right)\times \frac{2}{5}}
Do the multiplications in the fraction \frac{-1}{30\times 7}.
\sqrt{-\frac{1}{210}\left(\frac{5}{4}-\frac{18}{8}+1\right)\times \frac{2}{5}}
Fraction \frac{-1}{210} can be rewritten as -\frac{1}{210} by extracting the negative sign.
\sqrt{-\frac{1}{210}\left(\frac{5}{4}-\frac{9}{4}+1\right)\times \frac{2}{5}}
Reduce the fraction \frac{18}{8} to lowest terms by extracting and canceling out 2.
\sqrt{-\frac{1}{210}\left(\frac{5-9}{4}+1\right)\times \frac{2}{5}}
Since \frac{5}{4} and \frac{9}{4} have the same denominator, subtract them by subtracting their numerators.
\sqrt{-\frac{1}{210}\left(\frac{-4}{4}+1\right)\times \frac{2}{5}}
Subtract 9 from 5 to get -4.
\sqrt{-\frac{1}{210}\left(-1+1\right)\times \frac{2}{5}}
Divide -4 by 4 to get -1.
\sqrt{-\frac{1}{210}\times 0\times \frac{2}{5}}
Add -1 and 1 to get 0.
\sqrt{0\times \frac{2}{5}}
Multiply -\frac{1}{210} and 0 to get 0.
\sqrt{0}
Multiply 0 and \frac{2}{5} to get 0.
0
Calculate the square root of 0 and get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}