Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\frac{\left(2\sqrt{6}\right)^{2}}{3^{2}}-\left(\frac{2\sqrt{15}}{15}\right)^{2}}
To raise \frac{2\sqrt{6}}{3} to a power, raise both numerator and denominator to the power and then divide.
\sqrt{\frac{\left(2\sqrt{6}\right)^{2}}{3^{2}}-\frac{\left(2\sqrt{15}\right)^{2}}{15^{2}}}
To raise \frac{2\sqrt{15}}{15} to a power, raise both numerator and denominator to the power and then divide.
\sqrt{\frac{\left(2\sqrt{6}\right)^{2}}{3^{2}}-\frac{2^{2}\left(\sqrt{15}\right)^{2}}{15^{2}}}
Expand \left(2\sqrt{15}\right)^{2}.
\sqrt{\frac{\left(2\sqrt{6}\right)^{2}}{3^{2}}-\frac{4\left(\sqrt{15}\right)^{2}}{15^{2}}}
Calculate 2 to the power of 2 and get 4.
\sqrt{\frac{\left(2\sqrt{6}\right)^{2}}{3^{2}}-\frac{4\times 15}{15^{2}}}
The square of \sqrt{15} is 15.
\sqrt{\frac{\left(2\sqrt{6}\right)^{2}}{3^{2}}-\frac{60}{15^{2}}}
Multiply 4 and 15 to get 60.
\sqrt{\frac{\left(2\sqrt{6}\right)^{2}}{3^{2}}-\frac{60}{225}}
Calculate 15 to the power of 2 and get 225.
\sqrt{\frac{\left(2\sqrt{6}\right)^{2}}{3^{2}}-\frac{4}{15}}
Reduce the fraction \frac{60}{225} to lowest terms by extracting and canceling out 15.
\sqrt{\frac{5\times \left(2\sqrt{6}\right)^{2}}{45}-\frac{4\times 3}{45}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3^{2} and 15 is 45. Multiply \frac{\left(2\sqrt{6}\right)^{2}}{3^{2}} times \frac{5}{5}. Multiply \frac{4}{15} times \frac{3}{3}.
\sqrt{\frac{5\times \left(2\sqrt{6}\right)^{2}-4\times 3}{45}}
Since \frac{5\times \left(2\sqrt{6}\right)^{2}}{45} and \frac{4\times 3}{45} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{5\times 2^{2}\left(\sqrt{6}\right)^{2}-4\times 3}{45}}
Expand \left(2\sqrt{6}\right)^{2}.
\sqrt{\frac{5\times 4\left(\sqrt{6}\right)^{2}-4\times 3}{45}}
Calculate 2 to the power of 2 and get 4.
\sqrt{\frac{5\times 4\times 6-4\times 3}{45}}
The square of \sqrt{6} is 6.
\sqrt{\frac{5\times 24-4\times 3}{45}}
Multiply 4 and 6 to get 24.
\sqrt{\frac{120-4\times 3}{45}}
Multiply 5 and 24 to get 120.
\sqrt{\frac{120-12}{45}}
Multiply -4 and 3 to get -12.
\sqrt{\frac{108}{45}}
Subtract 12 from 120 to get 108.
\sqrt{\frac{12}{5}}
Reduce the fraction \frac{108}{45} to lowest terms by extracting and canceling out 9.
\frac{\sqrt{12}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{12}{5}} as the division of square roots \frac{\sqrt{12}}{\sqrt{5}}.
\frac{2\sqrt{3}}{\sqrt{5}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{2\sqrt{3}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{3}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{2\sqrt{3}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{2\sqrt{15}}{5}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.