Evaluate
\frac{11}{4}=2.75
Factor
\frac{11}{2 ^ {2}} = 2\frac{3}{4} = 2.75
Share
Copied to clipboard
\sqrt{\frac{\left(\frac{11}{4}\times \frac{8}{11}\right)^{2}}{\left(\frac{\frac{23}{12}-\frac{3}{2}}{\frac{5}{4}}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 1 from 2 to get 1.
\sqrt{\frac{2^{2}}{\left(\frac{\frac{23}{12}-\frac{3}{2}}{\frac{5}{4}}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Multiply \frac{11}{4} and \frac{8}{11} to get 2.
\sqrt{\frac{4}{\left(\frac{\frac{23}{12}-\frac{3}{2}}{\frac{5}{4}}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Calculate 2 to the power of 2 and get 4.
\sqrt{\frac{4}{\left(\frac{\frac{5}{12}}{\frac{5}{4}}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Subtract \frac{3}{2} from \frac{23}{12} to get \frac{5}{12}.
\sqrt{\frac{4}{\left(\frac{5}{12}\times \frac{4}{5}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Divide \frac{5}{12} by \frac{5}{4} by multiplying \frac{5}{12} by the reciprocal of \frac{5}{4}.
\sqrt{\frac{4}{\left(\frac{1}{3}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Multiply \frac{5}{12} and \frac{4}{5} to get \frac{1}{3}.
\sqrt{\frac{4}{\frac{1}{9}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
\sqrt{4\times 9}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Divide 4 by \frac{1}{9} by multiplying 4 by the reciprocal of \frac{1}{9}.
\sqrt{36}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Multiply 4 and 9 to get 36.
6-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Calculate the square root of 36 and get 6.
6-\sqrt{10+\frac{\frac{1}{2}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Calculate \frac{1}{2} to the power of 1 and get \frac{1}{2}.
6-\sqrt{10+\frac{\frac{1}{2}+\frac{12}{13}\times \frac{13}{12}}{\frac{8}{3}}}
Subtract \frac{1}{6} from \frac{5}{4} to get \frac{13}{12}.
6-\sqrt{10+\frac{\frac{1}{2}+1}{\frac{8}{3}}}
Multiply \frac{12}{13} and \frac{13}{12} to get 1.
6-\sqrt{10+\frac{\frac{3}{2}}{\frac{8}{3}}}
Add \frac{1}{2} and 1 to get \frac{3}{2}.
6-\sqrt{10+\frac{3}{2}\times \frac{3}{8}}
Divide \frac{3}{2} by \frac{8}{3} by multiplying \frac{3}{2} by the reciprocal of \frac{8}{3}.
6-\sqrt{10+\frac{9}{16}}
Multiply \frac{3}{2} and \frac{3}{8} to get \frac{9}{16}.
6-\sqrt{\frac{169}{16}}
Add 10 and \frac{9}{16} to get \frac{169}{16}.
6-\frac{13}{4}
Rewrite the square root of the division \frac{169}{16} as the division of square roots \frac{\sqrt{169}}{\sqrt{16}}. Take the square root of both numerator and denominator.
\frac{11}{4}
Subtract \frac{13}{4} from 6 to get \frac{11}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}