Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\frac{\left(\frac{11}{4}\times \frac{8}{11}\right)^{2}}{\left(\frac{\frac{23}{12}-\frac{3}{2}}{\frac{5}{4}}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 1 from 2 to get 1.
\sqrt{\frac{2^{2}}{\left(\frac{\frac{23}{12}-\frac{3}{2}}{\frac{5}{4}}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Multiply \frac{11}{4} and \frac{8}{11} to get 2.
\sqrt{\frac{4}{\left(\frac{\frac{23}{12}-\frac{3}{2}}{\frac{5}{4}}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Calculate 2 to the power of 2 and get 4.
\sqrt{\frac{4}{\left(\frac{\frac{5}{12}}{\frac{5}{4}}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Subtract \frac{3}{2} from \frac{23}{12} to get \frac{5}{12}.
\sqrt{\frac{4}{\left(\frac{5}{12}\times \frac{4}{5}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Divide \frac{5}{12} by \frac{5}{4} by multiplying \frac{5}{12} by the reciprocal of \frac{5}{4}.
\sqrt{\frac{4}{\left(\frac{1}{3}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Multiply \frac{5}{12} and \frac{4}{5} to get \frac{1}{3}.
\sqrt{\frac{4}{\frac{1}{9}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
\sqrt{4\times 9}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Divide 4 by \frac{1}{9} by multiplying 4 by the reciprocal of \frac{1}{9}.
\sqrt{36}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Multiply 4 and 9 to get 36.
6-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Calculate the square root of 36 and get 6.
6-\sqrt{10+\frac{\frac{1}{2}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Calculate \frac{1}{2} to the power of 1 and get \frac{1}{2}.
6-\sqrt{10+\frac{\frac{1}{2}+\frac{12}{13}\times \frac{13}{12}}{\frac{8}{3}}}
Subtract \frac{1}{6} from \frac{5}{4} to get \frac{13}{12}.
6-\sqrt{10+\frac{\frac{1}{2}+1}{\frac{8}{3}}}
Multiply \frac{12}{13} and \frac{13}{12} to get 1.
6-\sqrt{10+\frac{\frac{3}{2}}{\frac{8}{3}}}
Add \frac{1}{2} and 1 to get \frac{3}{2}.
6-\sqrt{10+\frac{3}{2}\times \frac{3}{8}}
Divide \frac{3}{2} by \frac{8}{3} by multiplying \frac{3}{2} by the reciprocal of \frac{8}{3}.
6-\sqrt{10+\frac{9}{16}}
Multiply \frac{3}{2} and \frac{3}{8} to get \frac{9}{16}.
6-\sqrt{\frac{169}{16}}
Add 10 and \frac{9}{16} to get \frac{169}{16}.
6-\frac{13}{4}
Rewrite the square root of the division \frac{169}{16} as the division of square roots \frac{\sqrt{169}}{\sqrt{16}}. Take the square root of both numerator and denominator.
\frac{11}{4}
Subtract \frac{13}{4} from 6 to get \frac{11}{4}.