Evaluate
\frac{5\sqrt{85}}{289}\approx 0.15950769
Share
Copied to clipboard
\sqrt{\left(\frac{5}{17}\right)^{3}}
Reduce the fraction \frac{10}{34} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{125}{4913}}
Calculate \frac{5}{17} to the power of 3 and get \frac{125}{4913}.
\frac{\sqrt{125}}{\sqrt{4913}}
Rewrite the square root of the division \sqrt{\frac{125}{4913}} as the division of square roots \frac{\sqrt{125}}{\sqrt{4913}}.
\frac{5\sqrt{5}}{\sqrt{4913}}
Factor 125=5^{2}\times 5. Rewrite the square root of the product \sqrt{5^{2}\times 5} as the product of square roots \sqrt{5^{2}}\sqrt{5}. Take the square root of 5^{2}.
\frac{5\sqrt{5}}{17\sqrt{17}}
Factor 4913=17^{2}\times 17. Rewrite the square root of the product \sqrt{17^{2}\times 17} as the product of square roots \sqrt{17^{2}}\sqrt{17}. Take the square root of 17^{2}.
\frac{5\sqrt{5}\sqrt{17}}{17\left(\sqrt{17}\right)^{2}}
Rationalize the denominator of \frac{5\sqrt{5}}{17\sqrt{17}} by multiplying numerator and denominator by \sqrt{17}.
\frac{5\sqrt{5}\sqrt{17}}{17\times 17}
The square of \sqrt{17} is 17.
\frac{5\sqrt{85}}{17\times 17}
To multiply \sqrt{5} and \sqrt{17}, multiply the numbers under the square root.
\frac{5\sqrt{85}}{289}
Multiply 17 and 17 to get 289.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}