Evaluate
\frac{10}{3}\approx 3.333333333
Factor
\frac{2 \cdot 5}{3} = 3\frac{1}{3} = 3.3333333333333335
Share
Copied to clipboard
\frac{1}{3}+\frac{2}{1-\sqrt{\frac{1}{9}}}
Rewrite the square root of the division \frac{1}{9} as the division of square roots \frac{\sqrt{1}}{\sqrt{9}}. Take the square root of both numerator and denominator.
\frac{1}{3}+\frac{2}{1-\frac{1}{3}}
Rewrite the square root of the division \frac{1}{9} as the division of square roots \frac{\sqrt{1}}{\sqrt{9}}. Take the square root of both numerator and denominator.
\frac{1}{3}+\frac{2}{\frac{3}{3}-\frac{1}{3}}
Convert 1 to fraction \frac{3}{3}.
\frac{1}{3}+\frac{2}{\frac{3-1}{3}}
Since \frac{3}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{3}+\frac{2}{\frac{2}{3}}
Subtract 1 from 3 to get 2.
\frac{1}{3}+2\times \frac{3}{2}
Divide 2 by \frac{2}{3} by multiplying 2 by the reciprocal of \frac{2}{3}.
\frac{1}{3}+3
Cancel out 2 and 2.
\frac{1}{3}+\frac{9}{3}
Convert 3 to fraction \frac{9}{3}.
\frac{1+9}{3}
Since \frac{1}{3} and \frac{9}{3} have the same denominator, add them by adding their numerators.
\frac{10}{3}
Add 1 and 9 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}