Solve for x
x=-\frac{2}{3}\approx -0.666666667
Graph
Share
Copied to clipboard
\sqrt{\frac{x+1}{3}}=3x-1-5x
Subtract 5x from both sides of the equation.
\sqrt{\frac{x+1}{3}}=-2x-1
Combine 3x and -5x to get -2x.
\sqrt{\frac{1}{3}x+\frac{1}{3}}=-2x-1
Divide each term of x+1 by 3 to get \frac{1}{3}x+\frac{1}{3}.
\left(\sqrt{\frac{1}{3}x+\frac{1}{3}}\right)^{2}=\left(-2x-1\right)^{2}
Square both sides of the equation.
\frac{1}{3}x+\frac{1}{3}=\left(-2x-1\right)^{2}
Calculate \sqrt{\frac{1}{3}x+\frac{1}{3}} to the power of 2 and get \frac{1}{3}x+\frac{1}{3}.
\frac{1}{3}x+\frac{1}{3}=4x^{2}+4x+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2x-1\right)^{2}.
\frac{1}{3}x+\frac{1}{3}-4x^{2}=4x+1
Subtract 4x^{2} from both sides.
\frac{1}{3}x+\frac{1}{3}-4x^{2}-4x=1
Subtract 4x from both sides.
-\frac{11}{3}x+\frac{1}{3}-4x^{2}=1
Combine \frac{1}{3}x and -4x to get -\frac{11}{3}x.
-\frac{11}{3}x+\frac{1}{3}-4x^{2}-1=0
Subtract 1 from both sides.
-\frac{11}{3}x-\frac{2}{3}-4x^{2}=0
Subtract 1 from \frac{1}{3} to get -\frac{2}{3}.
-4x^{2}-\frac{11}{3}x-\frac{2}{3}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{11}{3}\right)±\sqrt{\left(-\frac{11}{3}\right)^{2}-4\left(-4\right)\left(-\frac{2}{3}\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, -\frac{11}{3} for b, and -\frac{2}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{11}{3}\right)±\sqrt{\frac{121}{9}-4\left(-4\right)\left(-\frac{2}{3}\right)}}{2\left(-4\right)}
Square -\frac{11}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{11}{3}\right)±\sqrt{\frac{121}{9}+16\left(-\frac{2}{3}\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-\left(-\frac{11}{3}\right)±\sqrt{\frac{121}{9}-\frac{32}{3}}}{2\left(-4\right)}
Multiply 16 times -\frac{2}{3}.
x=\frac{-\left(-\frac{11}{3}\right)±\sqrt{\frac{25}{9}}}{2\left(-4\right)}
Add \frac{121}{9} to -\frac{32}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{11}{3}\right)±\frac{5}{3}}{2\left(-4\right)}
Take the square root of \frac{25}{9}.
x=\frac{\frac{11}{3}±\frac{5}{3}}{2\left(-4\right)}
The opposite of -\frac{11}{3} is \frac{11}{3}.
x=\frac{\frac{11}{3}±\frac{5}{3}}{-8}
Multiply 2 times -4.
x=\frac{\frac{16}{3}}{-8}
Now solve the equation x=\frac{\frac{11}{3}±\frac{5}{3}}{-8} when ± is plus. Add \frac{11}{3} to \frac{5}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{2}{3}
Divide \frac{16}{3} by -8.
x=\frac{2}{-8}
Now solve the equation x=\frac{\frac{11}{3}±\frac{5}{3}}{-8} when ± is minus. Subtract \frac{5}{3} from \frac{11}{3} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{1}{4}
Reduce the fraction \frac{2}{-8} to lowest terms by extracting and canceling out 2.
x=-\frac{2}{3} x=-\frac{1}{4}
The equation is now solved.
\sqrt{\frac{-\frac{2}{3}+1}{3}}+5\left(-\frac{2}{3}\right)=3\left(-\frac{2}{3}\right)-1
Substitute -\frac{2}{3} for x in the equation \sqrt{\frac{x+1}{3}}+5x=3x-1.
-3=-3
Simplify. The value x=-\frac{2}{3} satisfies the equation.
\sqrt{\frac{-\frac{1}{4}+1}{3}}+5\left(-\frac{1}{4}\right)=3\left(-\frac{1}{4}\right)-1
Substitute -\frac{1}{4} for x in the equation \sqrt{\frac{x+1}{3}}+5x=3x-1.
-\frac{3}{4}=-\frac{7}{4}
Simplify. The value x=-\frac{1}{4} does not satisfy the equation.
x=-\frac{2}{3}
Equation \sqrt{\frac{x+1}{3}}=-2x-1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}