Solve for r
r=\frac{8\left(y-2t^{2}\right)}{3}
t\geq 0
Solve for r (complex solution)
r=\frac{8\left(y-2t^{2}\right)}{3}
arg(t)<\pi \text{ or }t=0
Solve for t (complex solution)
t=\frac{\sqrt{8y-3r}}{4}
Solve for t
t=\frac{\sqrt{8y-3r}}{4}
y\geq \frac{3r}{8}
Share
Copied to clipboard
\sqrt{2y-\frac{3}{4}r}=2t
Divide each term of 8y-3r by 4 to get 2y-\frac{3}{4}r.
-\frac{3}{4}r+2y=4t^{2}
Square both sides of the equation.
-\frac{3}{4}r+2y-2y=4t^{2}-2y
Subtract 2y from both sides of the equation.
-\frac{3}{4}r=4t^{2}-2y
Subtracting 2y from itself leaves 0.
\frac{-\frac{3}{4}r}{-\frac{3}{4}}=\frac{4t^{2}-2y}{-\frac{3}{4}}
Divide both sides of the equation by -\frac{3}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
r=\frac{4t^{2}-2y}{-\frac{3}{4}}
Dividing by -\frac{3}{4} undoes the multiplication by -\frac{3}{4}.
r=\frac{8y-16t^{2}}{3}
Divide 4t^{2}-2y by -\frac{3}{4} by multiplying 4t^{2}-2y by the reciprocal of -\frac{3}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}