Evaluate
\frac{\sqrt{14066}}{2600}\approx 0.045615449
Share
Copied to clipboard
\sqrt{\frac{75+20.25+40}{6.5\times 10^{4}}}
Calculate 4.5 to the power of 2 and get 20.25.
\sqrt{\frac{95.25+40}{6.5\times 10^{4}}}
Add 75 and 20.25 to get 95.25.
\sqrt{\frac{135.25}{6.5\times 10^{4}}}
Add 95.25 and 40 to get 135.25.
\sqrt{\frac{135.25}{6.5\times 10000}}
Calculate 10 to the power of 4 and get 10000.
\sqrt{\frac{135.25}{65000}}
Multiply 6.5 and 10000 to get 65000.
\sqrt{\frac{13525}{6500000}}
Expand \frac{135.25}{65000} by multiplying both numerator and the denominator by 100.
\sqrt{\frac{541}{260000}}
Reduce the fraction \frac{13525}{6500000} to lowest terms by extracting and canceling out 25.
\frac{\sqrt{541}}{\sqrt{260000}}
Rewrite the square root of the division \sqrt{\frac{541}{260000}} as the division of square roots \frac{\sqrt{541}}{\sqrt{260000}}.
\frac{\sqrt{541}}{100\sqrt{26}}
Factor 260000=100^{2}\times 26. Rewrite the square root of the product \sqrt{100^{2}\times 26} as the product of square roots \sqrt{100^{2}}\sqrt{26}. Take the square root of 100^{2}.
\frac{\sqrt{541}\sqrt{26}}{100\left(\sqrt{26}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{541}}{100\sqrt{26}} by multiplying numerator and denominator by \sqrt{26}.
\frac{\sqrt{541}\sqrt{26}}{100\times 26}
The square of \sqrt{26} is 26.
\frac{\sqrt{14066}}{100\times 26}
To multiply \sqrt{541} and \sqrt{26}, multiply the numbers under the square root.
\frac{\sqrt{14066}}{2600}
Multiply 100 and 26 to get 2600.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}