Evaluate
\frac{\sqrt{7}}{2}+\frac{5\sqrt{19}}{38}+\frac{3}{4}\approx 2.64641499
Share
Copied to clipboard
\frac{\sqrt{7}}{\sqrt{4}}+\sqrt{\frac{9}{16}}+\sqrt{\frac{25}{76}}
Rewrite the square root of the division \sqrt{\frac{7}{4}} as the division of square roots \frac{\sqrt{7}}{\sqrt{4}}.
\frac{\sqrt{7}}{2}+\sqrt{\frac{9}{16}}+\sqrt{\frac{25}{76}}
Calculate the square root of 4 and get 2.
\frac{\sqrt{7}}{2}+\frac{3}{4}+\sqrt{\frac{25}{76}}
Rewrite the square root of the division \frac{9}{16} as the division of square roots \frac{\sqrt{9}}{\sqrt{16}}. Take the square root of both numerator and denominator.
\frac{\sqrt{7}}{2}+\frac{3}{4}+\frac{\sqrt{25}}{\sqrt{76}}
Rewrite the square root of the division \sqrt{\frac{25}{76}} as the division of square roots \frac{\sqrt{25}}{\sqrt{76}}.
\frac{\sqrt{7}}{2}+\frac{3}{4}+\frac{5}{\sqrt{76}}
Calculate the square root of 25 and get 5.
\frac{\sqrt{7}}{2}+\frac{3}{4}+\frac{5}{2\sqrt{19}}
Factor 76=2^{2}\times 19. Rewrite the square root of the product \sqrt{2^{2}\times 19} as the product of square roots \sqrt{2^{2}}\sqrt{19}. Take the square root of 2^{2}.
\frac{\sqrt{7}}{2}+\frac{3}{4}+\frac{5\sqrt{19}}{2\left(\sqrt{19}\right)^{2}}
Rationalize the denominator of \frac{5}{2\sqrt{19}} by multiplying numerator and denominator by \sqrt{19}.
\frac{\sqrt{7}}{2}+\frac{3}{4}+\frac{5\sqrt{19}}{2\times 19}
The square of \sqrt{19} is 19.
\frac{\sqrt{7}}{2}+\frac{3}{4}+\frac{5\sqrt{19}}{38}
Multiply 2 and 19 to get 38.
\frac{2\sqrt{7}}{4}+\frac{3}{4}+\frac{5\sqrt{19}}{38}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 4 is 4. Multiply \frac{\sqrt{7}}{2} times \frac{2}{2}.
\frac{2\sqrt{7}+3}{4}+\frac{5\sqrt{19}}{38}
Since \frac{2\sqrt{7}}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
\frac{19\left(2\sqrt{7}+3\right)}{76}+\frac{2\times 5\sqrt{19}}{76}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 38 is 76. Multiply \frac{2\sqrt{7}+3}{4} times \frac{19}{19}. Multiply \frac{5\sqrt{19}}{38} times \frac{2}{2}.
\frac{19\left(2\sqrt{7}+3\right)+2\times 5\sqrt{19}}{76}
Since \frac{19\left(2\sqrt{7}+3\right)}{76} and \frac{2\times 5\sqrt{19}}{76} have the same denominator, add them by adding their numerators.
\frac{38\sqrt{7}+57+10\sqrt{19}}{76}
Do the multiplications in 19\left(2\sqrt{7}+3\right)+2\times 5\sqrt{19}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}