Solve for x
x = \frac{20}{9} = 2\frac{2}{9} \approx 2.222222222
Graph
Share
Copied to clipboard
\sqrt{\frac{7}{12}\times \frac{7}{3}}=x\left(\frac{2}{5}+\frac{1}{8}\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\sqrt{\frac{7\times 7}{12\times 3}}=x\left(\frac{2}{5}+\frac{1}{8}\right)
Multiply \frac{7}{12} times \frac{7}{3} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{49}{36}}=x\left(\frac{2}{5}+\frac{1}{8}\right)
Do the multiplications in the fraction \frac{7\times 7}{12\times 3}.
\frac{7}{6}=x\left(\frac{2}{5}+\frac{1}{8}\right)
Rewrite the square root of the division \frac{49}{36} as the division of square roots \frac{\sqrt{49}}{\sqrt{36}}. Take the square root of both numerator and denominator.
\frac{7}{6}=x\left(\frac{16}{40}+\frac{5}{40}\right)
Least common multiple of 5 and 8 is 40. Convert \frac{2}{5} and \frac{1}{8} to fractions with denominator 40.
\frac{7}{6}=x\times \frac{16+5}{40}
Since \frac{16}{40} and \frac{5}{40} have the same denominator, add them by adding their numerators.
\frac{7}{6}=x\times \frac{21}{40}
Add 16 and 5 to get 21.
x\times \frac{21}{40}=\frac{7}{6}
Swap sides so that all variable terms are on the left hand side.
x=\frac{7}{6}\times \frac{40}{21}
Multiply both sides by \frac{40}{21}, the reciprocal of \frac{21}{40}.
x=\frac{7\times 40}{6\times 21}
Multiply \frac{7}{6} times \frac{40}{21} by multiplying numerator times numerator and denominator times denominator.
x=\frac{280}{126}
Do the multiplications in the fraction \frac{7\times 40}{6\times 21}.
x=\frac{20}{9}
Reduce the fraction \frac{280}{126} to lowest terms by extracting and canceling out 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}