Skip to main content
Evaluate
Tick mark Image

Share

\sqrt{\frac{358801}{33}}\sin(60)
Calculate 599 to the power of 2 and get 358801.
\frac{\sqrt{358801}}{\sqrt{33}}\sin(60)
Rewrite the square root of the division \sqrt{\frac{358801}{33}} as the division of square roots \frac{\sqrt{358801}}{\sqrt{33}}.
\frac{599}{\sqrt{33}}\sin(60)
Calculate the square root of 358801 and get 599.
\frac{599\sqrt{33}}{\left(\sqrt{33}\right)^{2}}\sin(60)
Rationalize the denominator of \frac{599}{\sqrt{33}} by multiplying numerator and denominator by \sqrt{33}.
\frac{599\sqrt{33}}{33}\sin(60)
The square of \sqrt{33} is 33.
\frac{599\sqrt{33}}{33}\times \frac{\sqrt{3}}{2}
Get the value of \sin(60) from trigonometric values table.
\frac{599\sqrt{33}\sqrt{3}}{33\times 2}
Multiply \frac{599\sqrt{33}}{33} times \frac{\sqrt{3}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{599\sqrt{3}\sqrt{11}\sqrt{3}}{33\times 2}
Factor 33=3\times 11. Rewrite the square root of the product \sqrt{3\times 11} as the product of square roots \sqrt{3}\sqrt{11}.
\frac{599\times 3\sqrt{11}}{33\times 2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{1797\sqrt{11}}{33\times 2}
Multiply 599 and 3 to get 1797.
\frac{1797\sqrt{11}}{66}
Multiply 33 and 2 to get 66.
\frac{599}{22}\sqrt{11}
Divide 1797\sqrt{11} by 66 to get \frac{599}{22}\sqrt{11}.