Evaluate
\frac{1}{2}=0.5
Factor
\frac{1}{2} = 0.5
Share
Copied to clipboard
\frac{\sqrt{5}}{\sqrt{8}}\sqrt{1-\frac{1}{2}+\frac{1}{10}-\frac{1}{5}}
Rewrite the square root of the division \sqrt{\frac{5}{8}} as the division of square roots \frac{\sqrt{5}}{\sqrt{8}}.
\frac{\sqrt{5}}{2\sqrt{2}}\sqrt{1-\frac{1}{2}+\frac{1}{10}-\frac{1}{5}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\sqrt{5}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}\sqrt{1-\frac{1}{2}+\frac{1}{10}-\frac{1}{5}}
Rationalize the denominator of \frac{\sqrt{5}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{5}\sqrt{2}}{2\times 2}\sqrt{1-\frac{1}{2}+\frac{1}{10}-\frac{1}{5}}
The square of \sqrt{2} is 2.
\frac{\sqrt{10}}{2\times 2}\sqrt{1-\frac{1}{2}+\frac{1}{10}-\frac{1}{5}}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{10}}{4}\sqrt{1-\frac{1}{2}+\frac{1}{10}-\frac{1}{5}}
Multiply 2 and 2 to get 4.
\frac{\sqrt{10}}{4}\sqrt{\frac{2}{2}-\frac{1}{2}+\frac{1}{10}-\frac{1}{5}}
Convert 1 to fraction \frac{2}{2}.
\frac{\sqrt{10}}{4}\sqrt{\frac{2-1}{2}+\frac{1}{10}-\frac{1}{5}}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{10}}{4}\sqrt{\frac{1}{2}+\frac{1}{10}-\frac{1}{5}}
Subtract 1 from 2 to get 1.
\frac{\sqrt{10}}{4}\sqrt{\frac{5}{10}+\frac{1}{10}-\frac{1}{5}}
Least common multiple of 2 and 10 is 10. Convert \frac{1}{2} and \frac{1}{10} to fractions with denominator 10.
\frac{\sqrt{10}}{4}\sqrt{\frac{5+1}{10}-\frac{1}{5}}
Since \frac{5}{10} and \frac{1}{10} have the same denominator, add them by adding their numerators.
\frac{\sqrt{10}}{4}\sqrt{\frac{6}{10}-\frac{1}{5}}
Add 5 and 1 to get 6.
\frac{\sqrt{10}}{4}\sqrt{\frac{3}{5}-\frac{1}{5}}
Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
\frac{\sqrt{10}}{4}\sqrt{\frac{3-1}{5}}
Since \frac{3}{5} and \frac{1}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{10}}{4}\sqrt{\frac{2}{5}}
Subtract 1 from 3 to get 2.
\frac{\sqrt{10}}{4}\times \frac{\sqrt{2}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{2}{5}} as the division of square roots \frac{\sqrt{2}}{\sqrt{5}}.
\frac{\sqrt{10}}{4}\times \frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{10}}{4}\times \frac{\sqrt{2}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{\sqrt{10}}{4}\times \frac{\sqrt{10}}{5}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{10}\sqrt{10}}{4\times 5}
Multiply \frac{\sqrt{10}}{4} times \frac{\sqrt{10}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{10}{4\times 5}
Multiply \sqrt{10} and \sqrt{10} to get 10.
\frac{10}{20}
Multiply 4 and 5 to get 20.
\frac{1}{2}
Reduce the fraction \frac{10}{20} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}