Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{5}}{\sqrt{8}}\sqrt{1-\frac{1}{2}+\frac{1}{10}-\frac{1}{5}}
Rewrite the square root of the division \sqrt{\frac{5}{8}} as the division of square roots \frac{\sqrt{5}}{\sqrt{8}}.
\frac{\sqrt{5}}{2\sqrt{2}}\sqrt{1-\frac{1}{2}+\frac{1}{10}-\frac{1}{5}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\sqrt{5}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}\sqrt{1-\frac{1}{2}+\frac{1}{10}-\frac{1}{5}}
Rationalize the denominator of \frac{\sqrt{5}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{5}\sqrt{2}}{2\times 2}\sqrt{1-\frac{1}{2}+\frac{1}{10}-\frac{1}{5}}
The square of \sqrt{2} is 2.
\frac{\sqrt{10}}{2\times 2}\sqrt{1-\frac{1}{2}+\frac{1}{10}-\frac{1}{5}}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{10}}{4}\sqrt{1-\frac{1}{2}+\frac{1}{10}-\frac{1}{5}}
Multiply 2 and 2 to get 4.
\frac{\sqrt{10}}{4}\sqrt{\frac{2}{2}-\frac{1}{2}+\frac{1}{10}-\frac{1}{5}}
Convert 1 to fraction \frac{2}{2}.
\frac{\sqrt{10}}{4}\sqrt{\frac{2-1}{2}+\frac{1}{10}-\frac{1}{5}}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{10}}{4}\sqrt{\frac{1}{2}+\frac{1}{10}-\frac{1}{5}}
Subtract 1 from 2 to get 1.
\frac{\sqrt{10}}{4}\sqrt{\frac{5}{10}+\frac{1}{10}-\frac{1}{5}}
Least common multiple of 2 and 10 is 10. Convert \frac{1}{2} and \frac{1}{10} to fractions with denominator 10.
\frac{\sqrt{10}}{4}\sqrt{\frac{5+1}{10}-\frac{1}{5}}
Since \frac{5}{10} and \frac{1}{10} have the same denominator, add them by adding their numerators.
\frac{\sqrt{10}}{4}\sqrt{\frac{6}{10}-\frac{1}{5}}
Add 5 and 1 to get 6.
\frac{\sqrt{10}}{4}\sqrt{\frac{3}{5}-\frac{1}{5}}
Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
\frac{\sqrt{10}}{4}\sqrt{\frac{3-1}{5}}
Since \frac{3}{5} and \frac{1}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{10}}{4}\sqrt{\frac{2}{5}}
Subtract 1 from 3 to get 2.
\frac{\sqrt{10}}{4}\times \frac{\sqrt{2}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{2}{5}} as the division of square roots \frac{\sqrt{2}}{\sqrt{5}}.
\frac{\sqrt{10}}{4}\times \frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{10}}{4}\times \frac{\sqrt{2}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{\sqrt{10}}{4}\times \frac{\sqrt{10}}{5}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{10}\sqrt{10}}{4\times 5}
Multiply \frac{\sqrt{10}}{4} times \frac{\sqrt{10}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{10}{4\times 5}
Multiply \sqrt{10} and \sqrt{10} to get 10.
\frac{10}{20}
Multiply 4 and 5 to get 20.
\frac{1}{2}
Reduce the fraction \frac{10}{20} to lowest terms by extracting and canceling out 10.