Skip to main content
Evaluate
Tick mark Image

Share

\frac{\frac{\sqrt{4}}{\sqrt{3}}}{\sqrt{\frac{8}{3}}}\sqrt{\frac{8}{5}}
Rewrite the square root of the division \sqrt{\frac{4}{3}} as the division of square roots \frac{\sqrt{4}}{\sqrt{3}}.
\frac{\frac{2}{\sqrt{3}}}{\sqrt{\frac{8}{3}}}\sqrt{\frac{8}{5}}
Calculate the square root of 4 and get 2.
\frac{\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\sqrt{\frac{8}{3}}}\sqrt{\frac{8}{5}}
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{2\sqrt{3}}{3}}{\sqrt{\frac{8}{3}}}\sqrt{\frac{8}{5}}
The square of \sqrt{3} is 3.
\frac{\frac{2\sqrt{3}}{3}}{\frac{\sqrt{8}}{\sqrt{3}}}\sqrt{\frac{8}{5}}
Rewrite the square root of the division \sqrt{\frac{8}{3}} as the division of square roots \frac{\sqrt{8}}{\sqrt{3}}.
\frac{\frac{2\sqrt{3}}{3}}{\frac{2\sqrt{2}}{\sqrt{3}}}\sqrt{\frac{8}{5}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\frac{2\sqrt{3}}{3}}{\frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}\sqrt{\frac{8}{5}}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{2\sqrt{3}}{3}}{\frac{2\sqrt{2}\sqrt{3}}{3}}\sqrt{\frac{8}{5}}
The square of \sqrt{3} is 3.
\frac{\frac{2\sqrt{3}}{3}}{\frac{2\sqrt{6}}{3}}\sqrt{\frac{8}{5}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{2\sqrt{3}\times 3}{3\times 2\sqrt{6}}\sqrt{\frac{8}{5}}
Divide \frac{2\sqrt{3}}{3} by \frac{2\sqrt{6}}{3} by multiplying \frac{2\sqrt{3}}{3} by the reciprocal of \frac{2\sqrt{6}}{3}.
\frac{\sqrt{3}}{\sqrt{6}}\sqrt{\frac{8}{5}}
Cancel out 2\times 3 in both numerator and denominator.
\frac{\sqrt{3}\sqrt{6}}{\left(\sqrt{6}\right)^{2}}\sqrt{\frac{8}{5}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{\sqrt{3}\sqrt{6}}{6}\sqrt{\frac{8}{5}}
The square of \sqrt{6} is 6.
\frac{\sqrt{3}\sqrt{3}\sqrt{2}}{6}\sqrt{\frac{8}{5}}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{3\sqrt{2}}{6}\sqrt{\frac{8}{5}}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{1}{2}\sqrt{2}\sqrt{\frac{8}{5}}
Divide 3\sqrt{2} by 6 to get \frac{1}{2}\sqrt{2}.
\frac{1}{2}\sqrt{2}\times \frac{\sqrt{8}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{8}{5}} as the division of square roots \frac{\sqrt{8}}{\sqrt{5}}.
\frac{1}{2}\sqrt{2}\times \frac{2\sqrt{2}}{\sqrt{5}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{1}{2}\sqrt{2}\times \frac{2\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{1}{2}\sqrt{2}\times \frac{2\sqrt{2}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{1}{2}\sqrt{2}\times \frac{2\sqrt{10}}{5}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{2\sqrt{10}}{2\times 5}\sqrt{2}
Multiply \frac{1}{2} times \frac{2\sqrt{10}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{10}}{5}\sqrt{2}
Cancel out 2 in both numerator and denominator.
\frac{\sqrt{10}\sqrt{2}}{5}
Express \frac{\sqrt{10}}{5}\sqrt{2} as a single fraction.
\frac{\sqrt{2}\sqrt{5}\sqrt{2}}{5}
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
\frac{2\sqrt{5}}{5}
Multiply \sqrt{2} and \sqrt{2} to get 2.