Solve for k
k=3p-50
Solve for p
p=\frac{k+50}{3}
Share
Copied to clipboard
\sqrt{\frac{3}{2}p-\frac{1}{2}k}=5
Divide each term of 3p-k by 2 to get \frac{3}{2}p-\frac{1}{2}k.
-\frac{1}{2}k+\frac{3p}{2}=25
Square both sides of the equation.
-\frac{1}{2}k+\frac{3p}{2}-\frac{3p}{2}=25-\frac{3p}{2}
Subtract \frac{3}{2}p from both sides of the equation.
-\frac{1}{2}k=25-\frac{3p}{2}
Subtracting \frac{3}{2}p from itself leaves 0.
-\frac{1}{2}k=-\frac{3p}{2}+25
Subtract \frac{3}{2}p from 25.
\frac{-\frac{1}{2}k}{-\frac{1}{2}}=\frac{-\frac{3p}{2}+25}{-\frac{1}{2}}
Multiply both sides by -2.
k=\frac{-\frac{3p}{2}+25}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
k=3p-50
Divide 25-\frac{3p}{2} by -\frac{1}{2} by multiplying 25-\frac{3p}{2} by the reciprocal of -\frac{1}{2}.
\sqrt{\frac{3}{2}p-\frac{1}{2}k}=5
Divide each term of 3p-k by 2 to get \frac{3}{2}p-\frac{1}{2}k.
\frac{3}{2}p-\frac{k}{2}=25
Square both sides of the equation.
\frac{3}{2}p-\frac{k}{2}-\left(-\frac{k}{2}\right)=25-\left(-\frac{k}{2}\right)
Subtract -\frac{1}{2}k from both sides of the equation.
\frac{3}{2}p=25-\left(-\frac{k}{2}\right)
Subtracting -\frac{1}{2}k from itself leaves 0.
\frac{3}{2}p=\frac{k}{2}+25
Subtract -\frac{1}{2}k from 25.
\frac{\frac{3}{2}p}{\frac{3}{2}}=\frac{\frac{k}{2}+25}{\frac{3}{2}}
Divide both sides of the equation by \frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
p=\frac{\frac{k}{2}+25}{\frac{3}{2}}
Dividing by \frac{3}{2} undoes the multiplication by \frac{3}{2}.
p=\frac{k+50}{3}
Divide 25+\frac{k}{2} by \frac{3}{2} by multiplying 25+\frac{k}{2} by the reciprocal of \frac{3}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}