Solve for x
x=\frac{\sqrt{15}+30}{120}\approx 0.282274861
Graph
Share
Copied to clipboard
\frac{\sqrt{3}}{\sqrt{5}}\left(x+1\right)+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
Rewrite the square root of the division \sqrt{\frac{3}{5}} as the division of square roots \frac{\sqrt{3}}{\sqrt{5}}.
\frac{\sqrt{3}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\left(x+1\right)+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{3}\sqrt{5}}{5}\left(x+1\right)+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
The square of \sqrt{5} is 5.
\frac{\sqrt{15}}{5}\left(x+1\right)+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{15}\left(x+1\right)}{5}+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
Express \frac{\sqrt{15}}{5}\left(x+1\right) as a single fraction.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{5}}{\sqrt{3}}\left(x-1\right)=\frac{1}{15}
Rewrite the square root of the division \sqrt{\frac{5}{3}} as the division of square roots \frac{\sqrt{5}}{\sqrt{3}}.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\left(x-1\right)=\frac{1}{15}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{5}\sqrt{3}}{3}\left(x-1\right)=\frac{1}{15}
The square of \sqrt{3} is 3.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{15}}{3}\left(x-1\right)=\frac{1}{15}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{15}\left(x-1\right)}{3}=\frac{1}{15}
Express \frac{\sqrt{15}}{3}\left(x-1\right) as a single fraction.
\frac{3\sqrt{15}\left(x+1\right)}{15}+\frac{5\sqrt{15}\left(x-1\right)}{15}=\frac{1}{15}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 3 is 15. Multiply \frac{\sqrt{15}\left(x+1\right)}{5} times \frac{3}{3}. Multiply \frac{\sqrt{15}\left(x-1\right)}{3} times \frac{5}{5}.
\frac{3\sqrt{15}\left(x+1\right)+5\sqrt{15}\left(x-1\right)}{15}=\frac{1}{15}
Since \frac{3\sqrt{15}\left(x+1\right)}{15} and \frac{5\sqrt{15}\left(x-1\right)}{15} have the same denominator, add them by adding their numerators.
\frac{3\sqrt{15}x+3\sqrt{15}+5\sqrt{15}x-5\sqrt{15}}{15}=\frac{1}{15}
Do the multiplications in 3\sqrt{15}\left(x+1\right)+5\sqrt{15}\left(x-1\right).
\frac{8\sqrt{15}x-2\sqrt{15}}{15}=\frac{1}{15}
Combine like terms in 3\sqrt{15}x+3\sqrt{15}+5\sqrt{15}x-5\sqrt{15}.
8\sqrt{15}x-2\sqrt{15}=\frac{1}{15}\times 15
Multiply both sides by 15.
8\sqrt{15}x-2\sqrt{15}=1
Cancel out 15 and 15.
8\sqrt{15}x=1+2\sqrt{15}
Add 2\sqrt{15} to both sides.
8\sqrt{15}x=2\sqrt{15}+1
The equation is in standard form.
\frac{8\sqrt{15}x}{8\sqrt{15}}=\frac{2\sqrt{15}+1}{8\sqrt{15}}
Divide both sides by 8\sqrt{15}.
x=\frac{2\sqrt{15}+1}{8\sqrt{15}}
Dividing by 8\sqrt{15} undoes the multiplication by 8\sqrt{15}.
x=\frac{\sqrt{15}}{120}+\frac{1}{4}
Divide 1+2\sqrt{15} by 8\sqrt{15}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}