Evaluate
\frac{\sqrt{3}}{6}\approx 0.288675135
Share
Copied to clipboard
\sqrt{\frac{3\times 23.04}{28.8^{2}}}
Calculate 4.8 to the power of 2 and get 23.04.
\sqrt{\frac{69.12}{28.8^{2}}}
Multiply 3 and 23.04 to get 69.12.
\sqrt{\frac{69.12}{829.44}}
Calculate 28.8 to the power of 2 and get 829.44.
\sqrt{\frac{6912}{82944}}
Expand \frac{69.12}{829.44} by multiplying both numerator and the denominator by 100.
\sqrt{\frac{1}{12}}
Reduce the fraction \frac{6912}{82944} to lowest terms by extracting and canceling out 6912.
\frac{\sqrt{1}}{\sqrt{12}}
Rewrite the square root of the division \sqrt{\frac{1}{12}} as the division of square roots \frac{\sqrt{1}}{\sqrt{12}}.
\frac{1}{\sqrt{12}}
Calculate the square root of 1 and get 1.
\frac{1}{2\sqrt{3}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{1}{2\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{3}}{2\times 3}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}}{6}
Multiply 2 and 3 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}