Evaluate
\frac{4\sqrt{143}n}{11}-\frac{\sqrt{42}}{2}
Differentiate w.r.t. n
\frac{4 \sqrt{143}}{11} = 4.348458452036872
Share
Copied to clipboard
\frac{\sqrt{208}}{\sqrt{11}}n-\sqrt{\frac{21}{2}}
Rewrite the square root of the division \sqrt{\frac{208}{11}} as the division of square roots \frac{\sqrt{208}}{\sqrt{11}}.
\frac{4\sqrt{13}}{\sqrt{11}}n-\sqrt{\frac{21}{2}}
Factor 208=4^{2}\times 13. Rewrite the square root of the product \sqrt{4^{2}\times 13} as the product of square roots \sqrt{4^{2}}\sqrt{13}. Take the square root of 4^{2}.
\frac{4\sqrt{13}\sqrt{11}}{\left(\sqrt{11}\right)^{2}}n-\sqrt{\frac{21}{2}}
Rationalize the denominator of \frac{4\sqrt{13}}{\sqrt{11}} by multiplying numerator and denominator by \sqrt{11}.
\frac{4\sqrt{13}\sqrt{11}}{11}n-\sqrt{\frac{21}{2}}
The square of \sqrt{11} is 11.
\frac{4\sqrt{143}}{11}n-\sqrt{\frac{21}{2}}
To multiply \sqrt{13} and \sqrt{11}, multiply the numbers under the square root.
\frac{4\sqrt{143}n}{11}-\sqrt{\frac{21}{2}}
Express \frac{4\sqrt{143}}{11}n as a single fraction.
\frac{4\sqrt{143}n}{11}-\frac{\sqrt{21}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{21}{2}} as the division of square roots \frac{\sqrt{21}}{\sqrt{2}}.
\frac{4\sqrt{143}n}{11}-\frac{\sqrt{21}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{21}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{4\sqrt{143}n}{11}-\frac{\sqrt{21}\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{4\sqrt{143}n}{11}-\frac{\sqrt{42}}{2}
To multiply \sqrt{21} and \sqrt{2}, multiply the numbers under the square root.
\frac{2\times 4\sqrt{143}n}{22}-\frac{11\sqrt{42}}{22}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 11 and 2 is 22. Multiply \frac{4\sqrt{143}n}{11} times \frac{2}{2}. Multiply \frac{\sqrt{42}}{2} times \frac{11}{11}.
\frac{2\times 4\sqrt{143}n-11\sqrt{42}}{22}
Since \frac{2\times 4\sqrt{143}n}{22} and \frac{11\sqrt{42}}{22} have the same denominator, subtract them by subtracting their numerators.
\frac{8n\sqrt{143}-11\sqrt{42}}{22}
Do the multiplications in 2\times 4\sqrt{143}n-11\sqrt{42}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}