Evaluate
\frac{\sqrt{11}}{5}+\sqrt{71}-33\approx -23.910525269
Share
Copied to clipboard
\frac{\sqrt{11}}{\sqrt{25}}+3\sqrt{\frac{71}{9}}-0.6\sqrt{3025}
Rewrite the square root of the division \sqrt{\frac{11}{25}} as the division of square roots \frac{\sqrt{11}}{\sqrt{25}}.
\frac{\sqrt{11}}{5}+3\sqrt{\frac{71}{9}}-0.6\sqrt{3025}
Calculate the square root of 25 and get 5.
\frac{\sqrt{11}}{5}+3\times \frac{\sqrt{71}}{\sqrt{9}}-0.6\sqrt{3025}
Rewrite the square root of the division \sqrt{\frac{71}{9}} as the division of square roots \frac{\sqrt{71}}{\sqrt{9}}.
\frac{\sqrt{11}}{5}+3\times \frac{\sqrt{71}}{3}-0.6\sqrt{3025}
Calculate the square root of 9 and get 3.
\frac{\sqrt{11}}{5}+\sqrt{71}-0.6\sqrt{3025}
Cancel out 3 and 3.
\frac{\sqrt{11}}{5}+\sqrt{71}-0.6\times 55
Calculate the square root of 3025 and get 55.
\frac{\sqrt{11}}{5}+\sqrt{71}-33
Multiply -0.6 and 55 to get -33.
\frac{\sqrt{11}}{5}+\frac{5\left(\sqrt{71}-33\right)}{5}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{71}-33 times \frac{5}{5}.
\frac{\sqrt{11}+5\left(\sqrt{71}-33\right)}{5}
Since \frac{\sqrt{11}}{5} and \frac{5\left(\sqrt{71}-33\right)}{5} have the same denominator, add them by adding their numerators.
\frac{\sqrt{11}+5\sqrt{71}-165}{5}
Do the multiplications in \sqrt{11}+5\left(\sqrt{71}-33\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}