Evaluate
\frac{3\sqrt{110}}{2000}\approx 0.015732133
Share
Copied to clipboard
\sqrt{\frac{0.55\times 0.45}{1000}}
Subtract 0.55 from 1 to get 0.45.
\sqrt{\frac{0.2475}{1000}}
Multiply 0.55 and 0.45 to get 0.2475.
\sqrt{\frac{2475}{10000000}}
Expand \frac{0.2475}{1000} by multiplying both numerator and the denominator by 10000.
\sqrt{\frac{99}{400000}}
Reduce the fraction \frac{2475}{10000000} to lowest terms by extracting and canceling out 25.
\frac{\sqrt{99}}{\sqrt{400000}}
Rewrite the square root of the division \sqrt{\frac{99}{400000}} as the division of square roots \frac{\sqrt{99}}{\sqrt{400000}}.
\frac{3\sqrt{11}}{\sqrt{400000}}
Factor 99=3^{2}\times 11. Rewrite the square root of the product \sqrt{3^{2}\times 11} as the product of square roots \sqrt{3^{2}}\sqrt{11}. Take the square root of 3^{2}.
\frac{3\sqrt{11}}{200\sqrt{10}}
Factor 400000=200^{2}\times 10. Rewrite the square root of the product \sqrt{200^{2}\times 10} as the product of square roots \sqrt{200^{2}}\sqrt{10}. Take the square root of 200^{2}.
\frac{3\sqrt{11}\sqrt{10}}{200\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{3\sqrt{11}}{200\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{3\sqrt{11}\sqrt{10}}{200\times 10}
The square of \sqrt{10} is 10.
\frac{3\sqrt{110}}{200\times 10}
To multiply \sqrt{11} and \sqrt{10}, multiply the numbers under the square root.
\frac{3\sqrt{110}}{2000}
Multiply 200 and 10 to get 2000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}