\sqrt { \frac { ( 1400 - 83 \times 9,8 ) \times 52 } { 83 } }
Evaluate
\frac{2\sqrt{15823535}}{415}\approx 19.17050948
Share
Copied to clipboard
\sqrt{\frac{\left(1400-813,4\right)\times 52}{83}}
Multiply 83 and 9,8 to get 813,4.
\sqrt{\frac{586,6\times 52}{83}}
Subtract 813,4 from 1400 to get 586,6.
\sqrt{\frac{30503,2}{83}}
Multiply 586,6 and 52 to get 30503,2.
\sqrt{\frac{305032}{830}}
Expand \frac{30503,2}{83} by multiplying both numerator and the denominator by 10.
\sqrt{\frac{152516}{415}}
Reduce the fraction \frac{305032}{830} to lowest terms by extracting and canceling out 2.
\frac{\sqrt{152516}}{\sqrt{415}}
Rewrite the square root of the division \sqrt{\frac{152516}{415}} as the division of square roots \frac{\sqrt{152516}}{\sqrt{415}}.
\frac{2\sqrt{38129}}{\sqrt{415}}
Factor 152516=2^{2}\times 38129. Rewrite the square root of the product \sqrt{2^{2}\times 38129} as the product of square roots \sqrt{2^{2}}\sqrt{38129}. Take the square root of 2^{2}.
\frac{2\sqrt{38129}\sqrt{415}}{\left(\sqrt{415}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{38129}}{\sqrt{415}} by multiplying numerator and denominator by \sqrt{415}.
\frac{2\sqrt{38129}\sqrt{415}}{415}
The square of \sqrt{415} is 415.
\frac{2\sqrt{15823535}}{415}
To multiply \sqrt{38129} and \sqrt{415}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}