Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\frac{\frac{13}{6}-\left(\frac{\left(1+\frac{1}{3}\right)^{2}}{\frac{4}{3}}+\frac{1}{5}\right)\times \frac{5}{46}+2-\frac{1}{4}}{\frac{3}{5}}}
Subtract \frac{1}{2} from \frac{8}{3} to get \frac{13}{6}.
\sqrt{\frac{\frac{13}{6}-\left(\frac{\left(\frac{4}{3}\right)^{2}}{\frac{4}{3}}+\frac{1}{5}\right)\times \frac{5}{46}+2-\frac{1}{4}}{\frac{3}{5}}}
Add 1 and \frac{1}{3} to get \frac{4}{3}.
\sqrt{\frac{\frac{13}{6}-\left(\frac{\frac{16}{9}}{\frac{4}{3}}+\frac{1}{5}\right)\times \frac{5}{46}+2-\frac{1}{4}}{\frac{3}{5}}}
Calculate \frac{4}{3} to the power of 2 and get \frac{16}{9}.
\sqrt{\frac{\frac{13}{6}-\left(\frac{16}{9}\times \frac{3}{4}+\frac{1}{5}\right)\times \frac{5}{46}+2-\frac{1}{4}}{\frac{3}{5}}}
Divide \frac{16}{9} by \frac{4}{3} by multiplying \frac{16}{9} by the reciprocal of \frac{4}{3}.
\sqrt{\frac{\frac{13}{6}-\left(\frac{4}{3}+\frac{1}{5}\right)\times \frac{5}{46}+2-\frac{1}{4}}{\frac{3}{5}}}
Multiply \frac{16}{9} and \frac{3}{4} to get \frac{4}{3}.
\sqrt{\frac{\frac{13}{6}-\frac{23}{15}\times \frac{5}{46}+2-\frac{1}{4}}{\frac{3}{5}}}
Add \frac{4}{3} and \frac{1}{5} to get \frac{23}{15}.
\sqrt{\frac{\frac{13}{6}-\frac{1}{6}+2-\frac{1}{4}}{\frac{3}{5}}}
Multiply \frac{23}{15} and \frac{5}{46} to get \frac{1}{6}.
\sqrt{\frac{2+2-\frac{1}{4}}{\frac{3}{5}}}
Subtract \frac{1}{6} from \frac{13}{6} to get 2.
\sqrt{\frac{4-\frac{1}{4}}{\frac{3}{5}}}
Add 2 and 2 to get 4.
\sqrt{\frac{\frac{15}{4}}{\frac{3}{5}}}
Subtract \frac{1}{4} from 4 to get \frac{15}{4}.
\sqrt{\frac{15}{4}\times \frac{5}{3}}
Divide \frac{15}{4} by \frac{3}{5} by multiplying \frac{15}{4} by the reciprocal of \frac{3}{5}.
\sqrt{\frac{25}{4}}
Multiply \frac{15}{4} and \frac{5}{3} to get \frac{25}{4}.
\frac{5}{2}
Rewrite the square root of the division \frac{25}{4} as the division of square roots \frac{\sqrt{25}}{\sqrt{4}}. Take the square root of both numerator and denominator.