Evaluate
\frac{5}{4}=1.25
Factor
\frac{5}{2 ^ {2}} = 1\frac{1}{4} = 1.25
Share
Copied to clipboard
\sqrt{\left(\left(\frac{3}{4}-\frac{7\times 1}{4\times 4}\right)\times \frac{8}{5}+\left(1+\frac{\frac{3}{8}}{\frac{1}{4}}\right)\times \frac{3}{10}\right)\times \frac{1}{4}+\frac{5}{4}}
Multiply \frac{7}{4} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\left(\left(\frac{3}{4}-\frac{7}{16}\right)\times \frac{8}{5}+\left(1+\frac{\frac{3}{8}}{\frac{1}{4}}\right)\times \frac{3}{10}\right)\times \frac{1}{4}+\frac{5}{4}}
Do the multiplications in the fraction \frac{7\times 1}{4\times 4}.
\sqrt{\left(\left(\frac{12}{16}-\frac{7}{16}\right)\times \frac{8}{5}+\left(1+\frac{\frac{3}{8}}{\frac{1}{4}}\right)\times \frac{3}{10}\right)\times \frac{1}{4}+\frac{5}{4}}
Least common multiple of 4 and 16 is 16. Convert \frac{3}{4} and \frac{7}{16} to fractions with denominator 16.
\sqrt{\left(\frac{12-7}{16}\times \frac{8}{5}+\left(1+\frac{\frac{3}{8}}{\frac{1}{4}}\right)\times \frac{3}{10}\right)\times \frac{1}{4}+\frac{5}{4}}
Since \frac{12}{16} and \frac{7}{16} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\left(\frac{5}{16}\times \frac{8}{5}+\left(1+\frac{\frac{3}{8}}{\frac{1}{4}}\right)\times \frac{3}{10}\right)\times \frac{1}{4}+\frac{5}{4}}
Subtract 7 from 12 to get 5.
\sqrt{\left(\frac{5\times 8}{16\times 5}+\left(1+\frac{\frac{3}{8}}{\frac{1}{4}}\right)\times \frac{3}{10}\right)\times \frac{1}{4}+\frac{5}{4}}
Multiply \frac{5}{16} times \frac{8}{5} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\left(\frac{8}{16}+\left(1+\frac{\frac{3}{8}}{\frac{1}{4}}\right)\times \frac{3}{10}\right)\times \frac{1}{4}+\frac{5}{4}}
Cancel out 5 in both numerator and denominator.
\sqrt{\left(\frac{1}{2}+\left(1+\frac{\frac{3}{8}}{\frac{1}{4}}\right)\times \frac{3}{10}\right)\times \frac{1}{4}+\frac{5}{4}}
Reduce the fraction \frac{8}{16} to lowest terms by extracting and canceling out 8.
\sqrt{\left(\frac{1}{2}+\left(1+\frac{3}{8}\times 4\right)\times \frac{3}{10}\right)\times \frac{1}{4}+\frac{5}{4}}
Divide \frac{3}{8} by \frac{1}{4} by multiplying \frac{3}{8} by the reciprocal of \frac{1}{4}.
\sqrt{\left(\frac{1}{2}+\left(1+\frac{3\times 4}{8}\right)\times \frac{3}{10}\right)\times \frac{1}{4}+\frac{5}{4}}
Express \frac{3}{8}\times 4 as a single fraction.
\sqrt{\left(\frac{1}{2}+\left(1+\frac{12}{8}\right)\times \frac{3}{10}\right)\times \frac{1}{4}+\frac{5}{4}}
Multiply 3 and 4 to get 12.
\sqrt{\left(\frac{1}{2}+\left(1+\frac{3}{2}\right)\times \frac{3}{10}\right)\times \frac{1}{4}+\frac{5}{4}}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
\sqrt{\left(\frac{1}{2}+\left(\frac{2}{2}+\frac{3}{2}\right)\times \frac{3}{10}\right)\times \frac{1}{4}+\frac{5}{4}}
Convert 1 to fraction \frac{2}{2}.
\sqrt{\left(\frac{1}{2}+\frac{2+3}{2}\times \frac{3}{10}\right)\times \frac{1}{4}+\frac{5}{4}}
Since \frac{2}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
\sqrt{\left(\frac{1}{2}+\frac{5}{2}\times \frac{3}{10}\right)\times \frac{1}{4}+\frac{5}{4}}
Add 2 and 3 to get 5.
\sqrt{\left(\frac{1}{2}+\frac{5\times 3}{2\times 10}\right)\times \frac{1}{4}+\frac{5}{4}}
Multiply \frac{5}{2} times \frac{3}{10} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\left(\frac{1}{2}+\frac{15}{20}\right)\times \frac{1}{4}+\frac{5}{4}}
Do the multiplications in the fraction \frac{5\times 3}{2\times 10}.
\sqrt{\left(\frac{1}{2}+\frac{3}{4}\right)\times \frac{1}{4}+\frac{5}{4}}
Reduce the fraction \frac{15}{20} to lowest terms by extracting and canceling out 5.
\sqrt{\left(\frac{2}{4}+\frac{3}{4}\right)\times \frac{1}{4}+\frac{5}{4}}
Least common multiple of 2 and 4 is 4. Convert \frac{1}{2} and \frac{3}{4} to fractions with denominator 4.
\sqrt{\frac{2+3}{4}\times \frac{1}{4}+\frac{5}{4}}
Since \frac{2}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
\sqrt{\frac{5}{4}\times \frac{1}{4}+\frac{5}{4}}
Add 2 and 3 to get 5.
\sqrt{\frac{5\times 1}{4\times 4}+\frac{5}{4}}
Multiply \frac{5}{4} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{5}{16}+\frac{5}{4}}
Do the multiplications in the fraction \frac{5\times 1}{4\times 4}.
\sqrt{\frac{5}{16}+\frac{20}{16}}
Least common multiple of 16 and 4 is 16. Convert \frac{5}{16} and \frac{5}{4} to fractions with denominator 16.
\sqrt{\frac{5+20}{16}}
Since \frac{5}{16} and \frac{20}{16} have the same denominator, add them by adding their numerators.
\sqrt{\frac{25}{16}}
Add 5 and 20 to get 25.
\frac{5}{4}
Rewrite the square root of the division \frac{25}{16} as the division of square roots \frac{\sqrt{25}}{\sqrt{16}}. Take the square root of both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}