Evaluate
\frac{3\sqrt{2}}{14}\approx 0.303045763
Share
Copied to clipboard
\sqrt{\frac{\frac{1}{4}+\frac{2}{4}-\frac{3}{5}}{\frac{9}{10}-\frac{2}{3}}\times \frac{1}{7}}
Least common multiple of 4 and 2 is 4. Convert \frac{1}{4} and \frac{1}{2} to fractions with denominator 4.
\sqrt{\frac{\frac{1+2}{4}-\frac{3}{5}}{\frac{9}{10}-\frac{2}{3}}\times \frac{1}{7}}
Since \frac{1}{4} and \frac{2}{4} have the same denominator, add them by adding their numerators.
\sqrt{\frac{\frac{3}{4}-\frac{3}{5}}{\frac{9}{10}-\frac{2}{3}}\times \frac{1}{7}}
Add 1 and 2 to get 3.
\sqrt{\frac{\frac{15}{20}-\frac{12}{20}}{\frac{9}{10}-\frac{2}{3}}\times \frac{1}{7}}
Least common multiple of 4 and 5 is 20. Convert \frac{3}{4} and \frac{3}{5} to fractions with denominator 20.
\sqrt{\frac{\frac{15-12}{20}}{\frac{9}{10}-\frac{2}{3}}\times \frac{1}{7}}
Since \frac{15}{20} and \frac{12}{20} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{\frac{3}{20}}{\frac{9}{10}-\frac{2}{3}}\times \frac{1}{7}}
Subtract 12 from 15 to get 3.
\sqrt{\frac{\frac{3}{20}}{\frac{27}{30}-\frac{20}{30}}\times \frac{1}{7}}
Least common multiple of 10 and 3 is 30. Convert \frac{9}{10} and \frac{2}{3} to fractions with denominator 30.
\sqrt{\frac{\frac{3}{20}}{\frac{27-20}{30}}\times \frac{1}{7}}
Since \frac{27}{30} and \frac{20}{30} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{\frac{3}{20}}{\frac{7}{30}}\times \frac{1}{7}}
Subtract 20 from 27 to get 7.
\sqrt{\frac{3}{20}\times \frac{30}{7}\times \frac{1}{7}}
Divide \frac{3}{20} by \frac{7}{30} by multiplying \frac{3}{20} by the reciprocal of \frac{7}{30}.
\sqrt{\frac{3\times 30}{20\times 7}\times \frac{1}{7}}
Multiply \frac{3}{20} times \frac{30}{7} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{90}{140}\times \frac{1}{7}}
Do the multiplications in the fraction \frac{3\times 30}{20\times 7}.
\sqrt{\frac{9}{14}\times \frac{1}{7}}
Reduce the fraction \frac{90}{140} to lowest terms by extracting and canceling out 10.
\sqrt{\frac{9\times 1}{14\times 7}}
Multiply \frac{9}{14} times \frac{1}{7} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{9}{98}}
Do the multiplications in the fraction \frac{9\times 1}{14\times 7}.
\frac{\sqrt{9}}{\sqrt{98}}
Rewrite the square root of the division \sqrt{\frac{9}{98}} as the division of square roots \frac{\sqrt{9}}{\sqrt{98}}.
\frac{3}{\sqrt{98}}
Calculate the square root of 9 and get 3.
\frac{3}{7\sqrt{2}}
Factor 98=7^{2}\times 2. Rewrite the square root of the product \sqrt{7^{2}\times 2} as the product of square roots \sqrt{7^{2}}\sqrt{2}. Take the square root of 7^{2}.
\frac{3\sqrt{2}}{7\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{3}{7\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{3\sqrt{2}}{7\times 2}
The square of \sqrt{2} is 2.
\frac{3\sqrt{2}}{14}
Multiply 7 and 2 to get 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}