Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\sqrt{\frac{\frac{4}{13}\left(7-\frac{1\times 75}{5\times 4}\right)}{\frac{16}{3}\left(\frac{4}{3}+\frac{\frac{5}{6}}{\frac{1}{2}}\right)}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Multiply \frac{1}{5} times \frac{75}{4} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{\frac{4}{13}\left(7-\frac{75}{20}\right)}{\frac{16}{3}\left(\frac{4}{3}+\frac{\frac{5}{6}}{\frac{1}{2}}\right)}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Do the multiplications in the fraction \frac{1\times 75}{5\times 4}.
\sqrt{\frac{\frac{4}{13}\left(7-\frac{15}{4}\right)}{\frac{16}{3}\left(\frac{4}{3}+\frac{\frac{5}{6}}{\frac{1}{2}}\right)}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Reduce the fraction \frac{75}{20} to lowest terms by extracting and canceling out 5.
\sqrt{\frac{\frac{4}{13}\left(\frac{28}{4}-\frac{15}{4}\right)}{\frac{16}{3}\left(\frac{4}{3}+\frac{\frac{5}{6}}{\frac{1}{2}}\right)}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Convert 7 to fraction \frac{28}{4}.
\sqrt{\frac{\frac{4}{13}\times \frac{28-15}{4}}{\frac{16}{3}\left(\frac{4}{3}+\frac{\frac{5}{6}}{\frac{1}{2}}\right)}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Since \frac{28}{4} and \frac{15}{4} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{\frac{4}{13}\times \frac{13}{4}}{\frac{16}{3}\left(\frac{4}{3}+\frac{\frac{5}{6}}{\frac{1}{2}}\right)}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Subtract 15 from 28 to get 13.
\sqrt{\frac{1}{\frac{16}{3}\left(\frac{4}{3}+\frac{\frac{5}{6}}{\frac{1}{2}}\right)}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Cancel out \frac{4}{13} and its reciprocal \frac{13}{4}.
\sqrt{\frac{1}{\frac{16}{3}\left(\frac{4}{3}+\frac{5}{6}\times 2\right)}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Divide \frac{5}{6} by \frac{1}{2} by multiplying \frac{5}{6} by the reciprocal of \frac{1}{2}.
\sqrt{\frac{1}{\frac{16}{3}\left(\frac{4}{3}+\frac{5\times 2}{6}\right)}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Express \frac{5}{6}\times 2 as a single fraction.
\sqrt{\frac{1}{\frac{16}{3}\left(\frac{4}{3}+\frac{10}{6}\right)}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Multiply 5 and 2 to get 10.
\sqrt{\frac{1}{\frac{16}{3}\left(\frac{4}{3}+\frac{5}{3}\right)}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Reduce the fraction \frac{10}{6} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{1}{\frac{16}{3}\times \frac{4+5}{3}}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Since \frac{4}{3} and \frac{5}{3} have the same denominator, add them by adding their numerators.
\sqrt{\frac{1}{\frac{16}{3}\times \frac{9}{3}}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Add 4 and 5 to get 9.
\sqrt{\frac{1}{\frac{16}{3}\times 3}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Divide 9 by 3 to get 3.
\sqrt{\frac{1}{16}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Cancel out 3 and 3.
\frac{1}{4}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Rewrite the square root of the division \frac{1}{16} as the division of square roots \frac{\sqrt{1}}{\sqrt{16}}. Take the square root of both numerator and denominator.
\frac{1}{4}+\sqrt{\left(\frac{212}{20}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Least common multiple of 5 and 20 is 20. Convert \frac{53}{5} and \frac{63}{20} to fractions with denominator 20.
\frac{1}{4}+\sqrt{\left(\frac{212-63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Since \frac{212}{20} and \frac{63}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}+\sqrt{\left(\frac{149}{20}-5\right)\left(1+\frac{1}{4}\right)}
Subtract 63 from 212 to get 149.
\frac{1}{4}+\sqrt{\left(\frac{149}{20}-\frac{100}{20}\right)\left(1+\frac{1}{4}\right)}
Convert 5 to fraction \frac{100}{20}.
\frac{1}{4}+\sqrt{\frac{149-100}{20}\left(1+\frac{1}{4}\right)}
Since \frac{149}{20} and \frac{100}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}+\sqrt{\frac{49}{20}\left(1+\frac{1}{4}\right)}
Subtract 100 from 149 to get 49.
\frac{1}{4}+\sqrt{\frac{49}{20}\left(\frac{4}{4}+\frac{1}{4}\right)}
Convert 1 to fraction \frac{4}{4}.
\frac{1}{4}+\sqrt{\frac{49}{20}\times \frac{4+1}{4}}
Since \frac{4}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{1}{4}+\sqrt{\frac{49}{20}\times \frac{5}{4}}
Add 4 and 1 to get 5.
\frac{1}{4}+\sqrt{\frac{49\times 5}{20\times 4}}
Multiply \frac{49}{20} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{4}+\sqrt{\frac{245}{80}}
Do the multiplications in the fraction \frac{49\times 5}{20\times 4}.
\frac{1}{4}+\sqrt{\frac{49}{16}}
Reduce the fraction \frac{245}{80} to lowest terms by extracting and canceling out 5.
\frac{1}{4}+\frac{7}{4}
Rewrite the square root of the division \frac{49}{16} as the division of square roots \frac{\sqrt{49}}{\sqrt{16}}. Take the square root of both numerator and denominator.
\frac{1+7}{4}
Since \frac{1}{4} and \frac{7}{4} have the same denominator, add them by adding their numerators.
\frac{8}{4}
Add 1 and 7 to get 8.
2
Divide 8 by 4 to get 2.