Evaluate
\frac{2}{3}\approx 0.666666667
Factor
\frac{2}{3} = 0.6666666666666666
Share
Copied to clipboard
\sqrt{\left(\frac{1}{4}+\left(\frac{5}{4}\right)^{2}-\left(\frac{7}{8}+\frac{7}{16}\right)\right)^{2}\left(2-\frac{2}{3}\right)^{2}}
Subtract \frac{3}{4} from 2 to get \frac{5}{4}.
\sqrt{\left(\frac{1}{4}+\frac{25}{16}-\left(\frac{7}{8}+\frac{7}{16}\right)\right)^{2}\left(2-\frac{2}{3}\right)^{2}}
Calculate \frac{5}{4} to the power of 2 and get \frac{25}{16}.
\sqrt{\left(\frac{29}{16}-\left(\frac{7}{8}+\frac{7}{16}\right)\right)^{2}\left(2-\frac{2}{3}\right)^{2}}
Add \frac{1}{4} and \frac{25}{16} to get \frac{29}{16}.
\sqrt{\left(\frac{29}{16}-\frac{21}{16}\right)^{2}\left(2-\frac{2}{3}\right)^{2}}
Add \frac{7}{8} and \frac{7}{16} to get \frac{21}{16}.
\sqrt{\left(\frac{1}{2}\right)^{2}\left(2-\frac{2}{3}\right)^{2}}
Subtract \frac{21}{16} from \frac{29}{16} to get \frac{1}{2}.
\sqrt{\frac{1}{4}\left(2-\frac{2}{3}\right)^{2}}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\sqrt{\frac{1}{4}\times \left(\frac{4}{3}\right)^{2}}
Subtract \frac{2}{3} from 2 to get \frac{4}{3}.
\sqrt{\frac{1}{4}\times \frac{16}{9}}
Calculate \frac{4}{3} to the power of 2 and get \frac{16}{9}.
\sqrt{\frac{4}{9}}
Multiply \frac{1}{4} and \frac{16}{9} to get \frac{4}{9}.
\frac{2}{3}
Rewrite the square root of the division \frac{4}{9} as the division of square roots \frac{\sqrt{4}}{\sqrt{9}}. Take the square root of both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}