Differentiate w.r.t. h
\cos(h)
Evaluate
\sin(h)
Share
Copied to clipboard
\frac{\mathrm{d}}{\mathrm{d}h}(\sin(h))=\left(\lim_{t\to 0}\frac{\sin(h+t)-\sin(h)}{t}\right)
For a function f\left(x\right), the derivative is the limit of \frac{f\left(x+h\right)-f\left(x\right)}{h} as h goes to 0, if that limit exists.
\lim_{t\to 0}\frac{\sin(t+h)-\sin(h)}{t}
Use the Sum Formula for Sine.
\lim_{t\to 0}\frac{\sin(h)\left(\cos(t)-1\right)+\cos(h)\sin(t)}{t}
Factor out \sin(h).
\left(\lim_{t\to 0}\sin(h)\right)\left(\lim_{t\to 0}\frac{\cos(t)-1}{t}\right)+\left(\lim_{t\to 0}\cos(h)\right)\left(\lim_{t\to 0}\frac{\sin(t)}{t}\right)
Rewrite the limit.
\sin(h)\left(\lim_{t\to 0}\frac{\cos(t)-1}{t}\right)+\cos(h)\left(\lim_{t\to 0}\frac{\sin(t)}{t}\right)
Use the fact that h is a constant when computing limits as t goes to 0.
\sin(h)\left(\lim_{t\to 0}\frac{\cos(t)-1}{t}\right)+\cos(h)
The limit \lim_{h\to 0}\frac{\sin(h)}{h} is 1.
\left(\lim_{t\to 0}\frac{\cos(t)-1}{t}\right)=\left(\lim_{t\to 0}\frac{\left(\cos(t)-1\right)\left(\cos(t)+1\right)}{t\left(\cos(t)+1\right)}\right)
To evaluate the limit \lim_{t\to 0}\frac{\cos(t)-1}{t}, first multiply the numerator and denominator by \cos(t)+1.
\lim_{t\to 0}\frac{\left(\cos(t)\right)^{2}-1}{t\left(\cos(t)+1\right)}
Multiply \cos(t)+1 times \cos(t)-1.
\lim_{t\to 0}-\frac{\left(\sin(t)\right)^{2}}{t\left(\cos(t)+1\right)}
Use the Pythagorean Identity.
\left(\lim_{t\to 0}-\frac{\sin(t)}{t}\right)\left(\lim_{t\to 0}\frac{\sin(t)}{\cos(t)+1}\right)
Rewrite the limit.
-\left(\lim_{t\to 0}\frac{\sin(t)}{\cos(t)+1}\right)
The limit \lim_{h\to 0}\frac{\sin(h)}{h} is 1.
\left(\lim_{t\to 0}\frac{\sin(t)}{\cos(t)+1}\right)=0
Use the fact that \frac{\sin(t)}{\cos(t)+1} is continuous at 0.
\cos(h)
Substitute the value 0 into the expression \sin(h)\left(\lim_{t\to 0}\frac{\cos(t)-1}{t}\right)+\cos(h).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}