Skip to main content
Solve for b
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{b}\left(1-\left(\sin(a)\right)^{2}\right)=\sin(a)
Swap sides so that all variable terms are on the left hand side.
\sqrt{b}-\sqrt{b}\left(\sin(a)\right)^{2}=\sin(a)
Use the distributive property to multiply \sqrt{b} by 1-\left(\sin(a)\right)^{2}.
\left(1-\left(\sin(a)\right)^{2}\right)\sqrt{b}=\sin(a)
Combine all terms containing b.
\frac{\left(-\left(\sin(a)\right)^{2}+1\right)\sqrt{b}}{-\left(\sin(a)\right)^{2}+1}=\frac{\sin(a)}{-\left(\sin(a)\right)^{2}+1}
Divide both sides by 1-\left(\sin(a)\right)^{2}.
\sqrt{b}=\frac{\sin(a)}{-\left(\sin(a)\right)^{2}+1}
Dividing by 1-\left(\sin(a)\right)^{2} undoes the multiplication by 1-\left(\sin(a)\right)^{2}.
\sqrt{b}=\frac{\tan(a)}{\cos(a)}
Divide \sin(a) by 1-\left(\sin(a)\right)^{2}.
b=\frac{\left(\tan(a)\right)^{2}}{\left(\cos(a)\right)^{2}}
Square both sides of the equation.