Solve for a
a=\frac{4}{N^{2}}
N\neq 0
Solve for N
N=\frac{2}{\sqrt{a}}
N=-\frac{2}{\sqrt{a}}\text{, }a>0
Share
Copied to clipboard
NaN = 4
Evaluate trigonometric functions in the problem
N^{2}a=4
Multiply N and N to get N^{2}.
\frac{N^{2}a}{N^{2}}=\frac{4}{N^{2}}
Divide both sides by N^{2}.
a=\frac{4}{N^{2}}
Dividing by N^{2} undoes the multiplication by N^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}