Evaluate
\frac{\sqrt{2}}{4}+1\approx 1.353553391
Share
Copied to clipboard
\frac{1}{2}\cos(45)+\left(\sin(60)\right)^{2}+\left(\cos(60)\right)^{2}
Get the value of \sin(30) from trigonometric values table.
\frac{1}{2}\times \frac{\sqrt{2}}{2}+\left(\sin(60)\right)^{2}+\left(\cos(60)\right)^{2}
Get the value of \cos(45) from trigonometric values table.
\frac{\sqrt{2}}{2\times 2}+\left(\sin(60)\right)^{2}+\left(\cos(60)\right)^{2}
Multiply \frac{1}{2} times \frac{\sqrt{2}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{2}}{2\times 2}+\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(\cos(60)\right)^{2}
Get the value of \sin(60) from trigonometric values table.
\frac{\sqrt{2}}{2\times 2}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\left(\cos(60)\right)^{2}
To raise \frac{\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\sqrt{2}}{2\times 2}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\left(\frac{1}{2}\right)^{2}
Get the value of \cos(60) from trigonometric values table.
\frac{\sqrt{2}}{2\times 2}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\frac{1}{4}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{\sqrt{2}}{4}+\frac{\left(\sqrt{3}\right)^{2}}{4}+\frac{1}{4}
To add or subtract expressions, expand them to make their denominators the same. Expand 2\times 2.
\frac{\sqrt{2}+\left(\sqrt{3}\right)^{2}}{4}+\frac{1}{4}
Since \frac{\sqrt{2}}{4} and \frac{\left(\sqrt{3}\right)^{2}}{4} have the same denominator, add them by adding their numerators.
\frac{\sqrt{2}}{4}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\frac{1}{4}
To add or subtract expressions, expand them to make their denominators the same. Expand 2\times 2.
\frac{\sqrt{2}+1}{4}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}
Since \frac{\sqrt{2}}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{\sqrt{2}+1}{4}+\frac{\left(\sqrt{3}\right)^{2}}{4}
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\frac{\sqrt{2}+1+\left(\sqrt{3}\right)^{2}}{4}
Since \frac{\sqrt{2}+1}{4} and \frac{\left(\sqrt{3}\right)^{2}}{4} have the same denominator, add them by adding their numerators.
\frac{\sqrt{2}+1}{4}+\frac{3}{2^{2}}
The square of \sqrt{3} is 3.
\frac{\sqrt{2}+1}{4}+\frac{3}{4}
Calculate 2 to the power of 2 and get 4.
\frac{\sqrt{2}+1+3}{4}
Since \frac{\sqrt{2}+1}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
\frac{\sqrt{2}+4}{4}
Do the calculations in \sqrt{2}+1+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}