Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2}\cos(45)+\left(\sin(60)\right)^{2}+\left(\cos(60)\right)^{2}
Get the value of \sin(30) from trigonometric values table.
\frac{1}{2}\times \frac{\sqrt{2}}{2}+\left(\sin(60)\right)^{2}+\left(\cos(60)\right)^{2}
Get the value of \cos(45) from trigonometric values table.
\frac{\sqrt{2}}{2\times 2}+\left(\sin(60)\right)^{2}+\left(\cos(60)\right)^{2}
Multiply \frac{1}{2} times \frac{\sqrt{2}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{2}}{2\times 2}+\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(\cos(60)\right)^{2}
Get the value of \sin(60) from trigonometric values table.
\frac{\sqrt{2}}{2\times 2}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\left(\cos(60)\right)^{2}
To raise \frac{\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\sqrt{2}}{2\times 2}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\left(\frac{1}{2}\right)^{2}
Get the value of \cos(60) from trigonometric values table.
\frac{\sqrt{2}}{2\times 2}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\frac{1}{4}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{\sqrt{2}}{4}+\frac{\left(\sqrt{3}\right)^{2}}{4}+\frac{1}{4}
To add or subtract expressions, expand them to make their denominators the same. Expand 2\times 2.
\frac{\sqrt{2}+\left(\sqrt{3}\right)^{2}}{4}+\frac{1}{4}
Since \frac{\sqrt{2}}{4} and \frac{\left(\sqrt{3}\right)^{2}}{4} have the same denominator, add them by adding their numerators.
\frac{\sqrt{2}}{4}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\frac{1}{4}
To add or subtract expressions, expand them to make their denominators the same. Expand 2\times 2.
\frac{\sqrt{2}+1}{4}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}
Since \frac{\sqrt{2}}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{\sqrt{2}+1}{4}+\frac{\left(\sqrt{3}\right)^{2}}{4}
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\frac{\sqrt{2}+1+\left(\sqrt{3}\right)^{2}}{4}
Since \frac{\sqrt{2}+1}{4} and \frac{\left(\sqrt{3}\right)^{2}}{4} have the same denominator, add them by adding their numerators.
\frac{\sqrt{2}+1}{4}+\frac{3}{2^{2}}
The square of \sqrt{3} is 3.
\frac{\sqrt{2}+1}{4}+\frac{3}{4}
Calculate 2 to the power of 2 and get 4.
\frac{\sqrt{2}+1+3}{4}
Since \frac{\sqrt{2}+1}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
\frac{\sqrt{2}+4}{4}
Do the calculations in \sqrt{2}+1+3.