Verify
true
Share
Copied to clipboard
\sin(30)=\sin(150)\cos(120)-\sin(120)\cos(150)
Subtract 120 from 150 to get 30.
\frac{1}{2}=\sin(150)\cos(120)-\sin(120)\cos(150)
Get the value of \sin(30) from trigonometric values table.
\frac{1}{2}=\frac{1}{2}\left(\sin(150-120)+\sin(150+120)\right)-\sin(120)\cos(150)
Use \sin(x)\cos(y)=\frac{1}{2}\left(\sin(x-y)+\sin(x+y)\right) to obtain the result.
\frac{1}{2}=\frac{1}{2}\left(\sin(30)+\sin(270)\right)-\sin(120)\cos(150)
Subtract 120 from 150. Add 120 to 150.
\frac{1}{2}=\frac{1}{2}\left(\frac{1}{2}+\sin(270)\right)-\sin(120)\cos(150)
Get the value of \sin(30) from trigonometric values table.
\frac{1}{2}=\frac{1}{2}\left(\frac{1}{2}-1\right)-\sin(120)\cos(150)
Get the value of \sin(270) from trigonometric values table.
\frac{1}{2}=-\frac{1}{4}-\sin(120)\cos(150)
Do the calculations.
\frac{1}{2}=-\frac{1}{4}-\frac{1}{2}\left(\sin(120-150)+\sin(120+150)\right)
Use \sin(x)\cos(y)=\frac{1}{2}\left(\sin(x-y)+\sin(x+y)\right) to obtain the result.
\frac{1}{2}=-\frac{1}{4}-\frac{1}{2}\left(\sin(-30)+\sin(270)\right)
Subtract 150 from 120. Add 150 to 120.
\frac{1}{2}=-\frac{1}{4}-\frac{1}{2}\left(-\sin(30)+\sin(270)\right)
Use the property \sin(-x)=-\sin(x).
\frac{1}{2}=-\frac{1}{4}-\frac{1}{2}\left(-\frac{1}{2}+\sin(270)\right)
Get the value of \sin(30) from trigonometric values table.
\frac{1}{2}=-\frac{1}{4}-\frac{1}{2}\left(-\frac{1}{2}-1\right)
Get the value of \sin(270) from trigonometric values table.
\frac{1}{2}=-\frac{1}{4}-\left(-\frac{3}{4}\right)
Do the calculations.
\frac{1}{2}=-\frac{1}{4}+\frac{3}{4}
The opposite of -\frac{3}{4} is \frac{3}{4}.
\frac{1}{2}=\frac{1}{2}
Add -\frac{1}{4} and \frac{3}{4} to get \frac{1}{2}.
\text{true}
Compare \frac{1}{2} and \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}