Solve for y (complex solution)
\left\{\begin{matrix}y=-i\ln(\frac{\sqrt{2}\left(\sqrt{2}\sin(\alpha )-\sqrt{-\cos(2\alpha )-1}\right)}{2})+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}\text{, }&\frac{\sqrt{2}\left(\sqrt{2}\sin(\alpha )-\sqrt{-\cos(2\alpha )-1}\right)}{2}\neq 0\\y=-i\ln(\frac{\sqrt{2}\left(\sqrt{2}\sin(\alpha )+\sqrt{-\cos(2\alpha )-1}\right)}{2})+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}\text{, }&\frac{\sqrt{2}\left(\sqrt{2}\sin(\alpha )+\sqrt{-\cos(2\alpha )-1}\right)}{2}\neq 0\end{matrix}\right.
Solve for α (complex solution)
\left\{\begin{matrix}\alpha =-i\ln(\frac{2i\cos(y)-\sqrt{2}\sqrt{-\cos(2y)+1}}{2})+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}\text{, }&\frac{2i\cos(y)-\sqrt{2}\sqrt{-\cos(2y)+1}}{2}\neq 0\\\alpha =-i\ln(\frac{2i\cos(y)+\sqrt{2}\sqrt{-\cos(2y)+1}}{2})+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}\text{, }&\frac{2i\cos(y)+\sqrt{2}\sqrt{-\cos(2y)+1}}{2}\neq 0\end{matrix}\right.
Solve for y
y=ArcCosI(SinI(\alpha ))+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}
y=\left(-1\right)\left(\left(-2\right)n_{4}\pi +ArcCosI(SinI(\alpha ))\right)\text{, }n_{4}\in \mathrm{Z}
Solve for α
\alpha =-\arcsin(\cos(y))+2\pi n_{1}+\pi \text{, }n_{1}\in \mathrm{Z}
\alpha =\arcsin(\cos(y))+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}