Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\left(\sin(A)\right)^{4}-\left(\cos(A)\right)^{4}\right)\left(\left(\sin(A)\right)^{4}+\left(\cos(A)\right)^{4}\right)
The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
-\cos(2A)\left(\left(\sin(A)\right)^{2}+\left(\cos(A)\right)^{2}\right)
Consider \left(SinI(A)\right)^{4}-\left(CosI(A)\right)^{4}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(\sin(A)-\cos(A)\right)\left(\sin(A)+\cos(A)\right)
Consider \left(SinI(A)\right)^{2}-\left(CosI(A)\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).