Evaluate
\frac{\sqrt{3}+1}{2}\approx 1.366025404
Share
Copied to clipboard
\left(\frac{1}{2}\right)^{2}+\sin(60)-\left(\sin(45)\right)^{2}+\left(\cos(30)\right)^{2}
Get the value of \sin(30) from trigonometric values table.
\frac{1}{4}+\sin(60)-\left(\sin(45)\right)^{2}+\left(\cos(30)\right)^{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{4}+\frac{\sqrt{3}}{2}-\left(\sin(45)\right)^{2}+\left(\cos(30)\right)^{2}
Get the value of \sin(60) from trigonometric values table.
\frac{1}{4}+\frac{2\sqrt{3}}{4}-\left(\sin(45)\right)^{2}+\left(\cos(30)\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 2 is 4. Multiply \frac{\sqrt{3}}{2} times \frac{2}{2}.
\frac{1+2\sqrt{3}}{4}-\left(\sin(45)\right)^{2}+\left(\cos(30)\right)^{2}
Since \frac{1}{4} and \frac{2\sqrt{3}}{4} have the same denominator, add them by adding their numerators.
\frac{1+2\sqrt{3}}{4}-\left(\frac{\sqrt{2}}{2}\right)^{2}+\left(\cos(30)\right)^{2}
Get the value of \sin(45) from trigonometric values table.
\frac{1+2\sqrt{3}}{4}-\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+\left(\cos(30)\right)^{2}
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{1+2\sqrt{3}}{4}-\frac{2}{2^{2}}+\left(\cos(30)\right)^{2}
The square of \sqrt{2} is 2.
\frac{1+2\sqrt{3}}{4}-\frac{2}{4}+\left(\cos(30)\right)^{2}
Calculate 2 to the power of 2 and get 4.
\frac{1+2\sqrt{3}-2}{4}+\left(\cos(30)\right)^{2}
Since \frac{1+2\sqrt{3}}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{-1+2\sqrt{3}}{4}+\left(\cos(30)\right)^{2}
Do the calculations in 1+2\sqrt{3}-2.
\frac{-1+2\sqrt{3}}{4}+\left(\frac{\sqrt{3}}{2}\right)^{2}
Get the value of \cos(30) from trigonometric values table.
\frac{-1+2\sqrt{3}}{4}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}
To raise \frac{\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{-1+2\sqrt{3}}{4}+\frac{\left(\sqrt{3}\right)^{2}}{4}
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\frac{-1+2\sqrt{3}+\left(\sqrt{3}\right)^{2}}{4}
Since \frac{-1+2\sqrt{3}}{4} and \frac{\left(\sqrt{3}\right)^{2}}{4} have the same denominator, add them by adding their numerators.
\frac{-1+2\sqrt{3}}{4}+\frac{3}{2^{2}}
The square of \sqrt{3} is 3.
\frac{-1+2\sqrt{3}}{4}+\frac{3}{4}
Calculate 2 to the power of 2 and get 4.
\frac{-1+2\sqrt{3}+3}{4}
Since \frac{-1+2\sqrt{3}}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
\frac{2+2\sqrt{3}}{4}
Do the calculations in -1+2\sqrt{3}+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}