Evaluate
-\frac{\sqrt{2}}{4}\approx -0.353553391
Share
Copied to clipboard
\left(\frac{\sqrt{2-\sqrt{2}}}{2}\right)^{2}-\left(\sin(\frac{2\pi }{8})\right)^{2}
Get the value of \sin(\frac{\pi }{8}) from trigonometric values table.
\frac{\left(\sqrt{2-\sqrt{2}}\right)^{2}}{2^{2}}-\left(\sin(\frac{2\pi }{8})\right)^{2}
To raise \frac{\sqrt{2-\sqrt{2}}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{2-\sqrt{2}}\right)^{2}}{2^{2}}-\left(\sin(\frac{1}{4}\pi )\right)^{2}
Divide 2\pi by 8 to get \frac{1}{4}\pi .
\frac{\left(\sqrt{2-\sqrt{2}}\right)^{2}}{2^{2}}-\left(\frac{\sqrt{2}}{2}\right)^{2}
Get the value of \sin(\frac{1}{4}\pi ) from trigonometric values table.
\frac{\left(\sqrt{2-\sqrt{2}}\right)^{2}}{2^{2}}-\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{2-\sqrt{2}}\right)^{2}}{2^{2}}-\frac{2}{2^{2}}
The square of \sqrt{2} is 2.
\frac{\left(\sqrt{2-\sqrt{2}}\right)^{2}}{2^{2}}-\frac{2}{4}
Calculate 2 to the power of 2 and get 4.
\frac{\left(\sqrt{2-\sqrt{2}}\right)^{2}}{2^{2}}-\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{\left(\sqrt{2-\sqrt{2}}\right)^{2}}{4}-\frac{2}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2^{2} and 2 is 4. Multiply \frac{1}{2} times \frac{2}{2}.
\frac{\left(\sqrt{2-\sqrt{2}}\right)^{2}-2}{4}
Since \frac{\left(\sqrt{2-\sqrt{2}}\right)^{2}}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{2-\sqrt{2}}{2^{2}}-\frac{1}{2}
Calculate \sqrt{2-\sqrt{2}} to the power of 2 and get 2-\sqrt{2}.
\frac{2-\sqrt{2}}{4}-\frac{1}{2}
Calculate 2 to the power of 2 and get 4.
\frac{2-\sqrt{2}}{4}-\frac{2}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 2 is 4. Multiply \frac{1}{2} times \frac{2}{2}.
\frac{2-\sqrt{2}-2}{4}
Since \frac{2-\sqrt{2}}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{-\sqrt{2}}{4}
Do the calculations in 2-\sqrt{2}-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}