Solve for c
\left\{\begin{matrix}c=\frac{12337410809\rho m^{4}}{4290625000000000000000000000000g}\text{, }&g\neq 0\text{ and }m\neq 0\\c\in \mathrm{R}\text{, }&\rho =0\text{ and }g=0\text{ and }m\neq 0\end{matrix}\right.
Solve for g
\left\{\begin{matrix}g=\frac{12337410809\rho m^{4}}{4290625000000000000000000000000c}\text{, }&c\neq 0\text{ and }m\neq 0\\g\in \mathrm{R}\text{, }&\rho =0\text{ and }c=0\text{ and }m\neq 0\end{matrix}\right.
Share
Copied to clipboard
\rho =\frac{2\times 137.3}{5.08^{3}\times 10^{-21}\times 6.023}gcm^{-4}
To multiply powers of the same base, add their exponents. Add -44 and 23 to get -21.
\rho =\frac{274.6}{5.08^{3}\times 10^{-21}\times 6.023}gcm^{-4}
Multiply 2 and 137.3 to get 274.6.
\rho =\frac{274.6}{131.096512\times 10^{-21}\times 6.023}gcm^{-4}
Calculate 5.08 to the power of 3 and get 131.096512.
\rho =\frac{274.6}{131.096512\times \frac{1}{1000000000000000000000}\times 6.023}gcm^{-4}
Calculate 10 to the power of -21 and get \frac{1}{1000000000000000000000}.
\rho =\frac{274.6}{\frac{2048383}{15625000000000000000000000}\times 6.023}gcm^{-4}
Multiply 131.096512 and \frac{1}{1000000000000000000000} to get \frac{2048383}{15625000000000000000000000}.
\rho =\frac{274.6}{\frac{12337410809}{15625000000000000000000000000}}gcm^{-4}
Multiply \frac{2048383}{15625000000000000000000000} and 6.023 to get \frac{12337410809}{15625000000000000000000000000}.
\rho =274.6\times \frac{15625000000000000000000000000}{12337410809}gcm^{-4}
Divide 274.6 by \frac{12337410809}{15625000000000000000000000000} by multiplying 274.6 by the reciprocal of \frac{12337410809}{15625000000000000000000000000}.
\rho =\frac{4290625000000000000000000000000}{12337410809}gcm^{-4}
Multiply 274.6 and \frac{15625000000000000000000000000}{12337410809} to get \frac{4290625000000000000000000000000}{12337410809}.
\frac{4290625000000000000000000000000}{12337410809}gcm^{-4}=\rho
Swap sides so that all variable terms are on the left hand side.
\frac{4290625000000000000000000000000g}{12337410809m^{4}}c=\rho
The equation is in standard form.
\frac{\frac{4290625000000000000000000000000g}{12337410809m^{4}}c\times 12337410809m^{4}}{4290625000000000000000000000000g}=\frac{\rho \times 12337410809m^{4}}{4290625000000000000000000000000g}
Divide both sides by \frac{4290625000000000000000000000000}{12337410809}gm^{-4}.
c=\frac{\rho \times 12337410809m^{4}}{4290625000000000000000000000000g}
Dividing by \frac{4290625000000000000000000000000}{12337410809}gm^{-4} undoes the multiplication by \frac{4290625000000000000000000000000}{12337410809}gm^{-4}.
c=\frac{12337410809\rho m^{4}}{4290625000000000000000000000000g}
Divide \rho by \frac{4290625000000000000000000000000}{12337410809}gm^{-4}.
\rho =\frac{2\times 137.3}{5.08^{3}\times 10^{-21}\times 6.023}gcm^{-4}
To multiply powers of the same base, add their exponents. Add -44 and 23 to get -21.
\rho =\frac{274.6}{5.08^{3}\times 10^{-21}\times 6.023}gcm^{-4}
Multiply 2 and 137.3 to get 274.6.
\rho =\frac{274.6}{131.096512\times 10^{-21}\times 6.023}gcm^{-4}
Calculate 5.08 to the power of 3 and get 131.096512.
\rho =\frac{274.6}{131.096512\times \frac{1}{1000000000000000000000}\times 6.023}gcm^{-4}
Calculate 10 to the power of -21 and get \frac{1}{1000000000000000000000}.
\rho =\frac{274.6}{\frac{2048383}{15625000000000000000000000}\times 6.023}gcm^{-4}
Multiply 131.096512 and \frac{1}{1000000000000000000000} to get \frac{2048383}{15625000000000000000000000}.
\rho =\frac{274.6}{\frac{12337410809}{15625000000000000000000000000}}gcm^{-4}
Multiply \frac{2048383}{15625000000000000000000000} and 6.023 to get \frac{12337410809}{15625000000000000000000000000}.
\rho =274.6\times \frac{15625000000000000000000000000}{12337410809}gcm^{-4}
Divide 274.6 by \frac{12337410809}{15625000000000000000000000000} by multiplying 274.6 by the reciprocal of \frac{12337410809}{15625000000000000000000000000}.
\rho =\frac{4290625000000000000000000000000}{12337410809}gcm^{-4}
Multiply 274.6 and \frac{15625000000000000000000000000}{12337410809} to get \frac{4290625000000000000000000000000}{12337410809}.
\frac{4290625000000000000000000000000}{12337410809}gcm^{-4}=\rho
Swap sides so that all variable terms are on the left hand side.
\frac{4290625000000000000000000000000c}{12337410809m^{4}}g=\rho
The equation is in standard form.
\frac{\frac{4290625000000000000000000000000c}{12337410809m^{4}}g\times 12337410809m^{4}}{4290625000000000000000000000000c}=\frac{\rho \times 12337410809m^{4}}{4290625000000000000000000000000c}
Divide both sides by \frac{4290625000000000000000000000000}{12337410809}cm^{-4}.
g=\frac{\rho \times 12337410809m^{4}}{4290625000000000000000000000000c}
Dividing by \frac{4290625000000000000000000000000}{12337410809}cm^{-4} undoes the multiplication by \frac{4290625000000000000000000000000}{12337410809}cm^{-4}.
g=\frac{12337410809\rho m^{4}}{4290625000000000000000000000000c}
Divide \rho by \frac{4290625000000000000000000000000}{12337410809}cm^{-4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}