Skip to main content
Solve for c
Tick mark Image
Solve for g
Tick mark Image

Similar Problems from Web Search

Share

\rho =\frac{2\times 137.3}{5.08^{3}\times 10^{-21}\times 6.023}gcm^{-4}
To multiply powers of the same base, add their exponents. Add -44 and 23 to get -21.
\rho =\frac{274.6}{5.08^{3}\times 10^{-21}\times 6.023}gcm^{-4}
Multiply 2 and 137.3 to get 274.6.
\rho =\frac{274.6}{131.096512\times 10^{-21}\times 6.023}gcm^{-4}
Calculate 5.08 to the power of 3 and get 131.096512.
\rho =\frac{274.6}{131.096512\times \frac{1}{1000000000000000000000}\times 6.023}gcm^{-4}
Calculate 10 to the power of -21 and get \frac{1}{1000000000000000000000}.
\rho =\frac{274.6}{\frac{2048383}{15625000000000000000000000}\times 6.023}gcm^{-4}
Multiply 131.096512 and \frac{1}{1000000000000000000000} to get \frac{2048383}{15625000000000000000000000}.
\rho =\frac{274.6}{\frac{12337410809}{15625000000000000000000000000}}gcm^{-4}
Multiply \frac{2048383}{15625000000000000000000000} and 6.023 to get \frac{12337410809}{15625000000000000000000000000}.
\rho =274.6\times \frac{15625000000000000000000000000}{12337410809}gcm^{-4}
Divide 274.6 by \frac{12337410809}{15625000000000000000000000000} by multiplying 274.6 by the reciprocal of \frac{12337410809}{15625000000000000000000000000}.
\rho =\frac{4290625000000000000000000000000}{12337410809}gcm^{-4}
Multiply 274.6 and \frac{15625000000000000000000000000}{12337410809} to get \frac{4290625000000000000000000000000}{12337410809}.
\frac{4290625000000000000000000000000}{12337410809}gcm^{-4}=\rho
Swap sides so that all variable terms are on the left hand side.
\frac{4290625000000000000000000000000g}{12337410809m^{4}}c=\rho
The equation is in standard form.
\frac{\frac{4290625000000000000000000000000g}{12337410809m^{4}}c\times 12337410809m^{4}}{4290625000000000000000000000000g}=\frac{\rho \times 12337410809m^{4}}{4290625000000000000000000000000g}
Divide both sides by \frac{4290625000000000000000000000000}{12337410809}gm^{-4}.
c=\frac{\rho \times 12337410809m^{4}}{4290625000000000000000000000000g}
Dividing by \frac{4290625000000000000000000000000}{12337410809}gm^{-4} undoes the multiplication by \frac{4290625000000000000000000000000}{12337410809}gm^{-4}.
c=\frac{12337410809\rho m^{4}}{4290625000000000000000000000000g}
Divide \rho by \frac{4290625000000000000000000000000}{12337410809}gm^{-4}.
\rho =\frac{2\times 137.3}{5.08^{3}\times 10^{-21}\times 6.023}gcm^{-4}
To multiply powers of the same base, add their exponents. Add -44 and 23 to get -21.
\rho =\frac{274.6}{5.08^{3}\times 10^{-21}\times 6.023}gcm^{-4}
Multiply 2 and 137.3 to get 274.6.
\rho =\frac{274.6}{131.096512\times 10^{-21}\times 6.023}gcm^{-4}
Calculate 5.08 to the power of 3 and get 131.096512.
\rho =\frac{274.6}{131.096512\times \frac{1}{1000000000000000000000}\times 6.023}gcm^{-4}
Calculate 10 to the power of -21 and get \frac{1}{1000000000000000000000}.
\rho =\frac{274.6}{\frac{2048383}{15625000000000000000000000}\times 6.023}gcm^{-4}
Multiply 131.096512 and \frac{1}{1000000000000000000000} to get \frac{2048383}{15625000000000000000000000}.
\rho =\frac{274.6}{\frac{12337410809}{15625000000000000000000000000}}gcm^{-4}
Multiply \frac{2048383}{15625000000000000000000000} and 6.023 to get \frac{12337410809}{15625000000000000000000000000}.
\rho =274.6\times \frac{15625000000000000000000000000}{12337410809}gcm^{-4}
Divide 274.6 by \frac{12337410809}{15625000000000000000000000000} by multiplying 274.6 by the reciprocal of \frac{12337410809}{15625000000000000000000000000}.
\rho =\frac{4290625000000000000000000000000}{12337410809}gcm^{-4}
Multiply 274.6 and \frac{15625000000000000000000000000}{12337410809} to get \frac{4290625000000000000000000000000}{12337410809}.
\frac{4290625000000000000000000000000}{12337410809}gcm^{-4}=\rho
Swap sides so that all variable terms are on the left hand side.
\frac{4290625000000000000000000000000c}{12337410809m^{4}}g=\rho
The equation is in standard form.
\frac{\frac{4290625000000000000000000000000c}{12337410809m^{4}}g\times 12337410809m^{4}}{4290625000000000000000000000000c}=\frac{\rho \times 12337410809m^{4}}{4290625000000000000000000000000c}
Divide both sides by \frac{4290625000000000000000000000000}{12337410809}cm^{-4}.
g=\frac{\rho \times 12337410809m^{4}}{4290625000000000000000000000000c}
Dividing by \frac{4290625000000000000000000000000}{12337410809}cm^{-4} undoes the multiplication by \frac{4290625000000000000000000000000}{12337410809}cm^{-4}.
g=\frac{12337410809\rho m^{4}}{4290625000000000000000000000000c}
Divide \rho by \frac{4290625000000000000000000000000}{12337410809}cm^{-4}.