Evaluate
-\frac{33499}{10}=-3349.9
Factor
-\frac{33499}{10} = -3349\frac{9}{10} = -3349.9
Share
Copied to clipboard
40-3540-79\times \frac{80-99}{500}\times 50
Multiply 59 and 60 to get 3540.
-3500-79\times \frac{80-99}{500}\times 50
Subtract 3540 from 40 to get -3500.
-3500-79\times \frac{-19}{500}\times 50
Subtract 99 from 80 to get -19.
-3500-79\left(-\frac{19}{500}\right)\times 50
Fraction \frac{-19}{500} can be rewritten as -\frac{19}{500} by extracting the negative sign.
-3500-\frac{79\left(-19\right)}{500}\times 50
Express 79\left(-\frac{19}{500}\right) as a single fraction.
-3500-\frac{-1501}{500}\times 50
Multiply 79 and -19 to get -1501.
-3500-\left(-\frac{1501}{500}\times 50\right)
Fraction \frac{-1501}{500} can be rewritten as -\frac{1501}{500} by extracting the negative sign.
-3500-\frac{-1501\times 50}{500}
Express -\frac{1501}{500}\times 50 as a single fraction.
-3500-\frac{-75050}{500}
Multiply -1501 and 50 to get -75050.
-3500-\left(-\frac{1501}{10}\right)
Reduce the fraction \frac{-75050}{500} to lowest terms by extracting and canceling out 50.
-3500+\frac{1501}{10}
The opposite of -\frac{1501}{10} is \frac{1501}{10}.
-\frac{35000}{10}+\frac{1501}{10}
Convert -3500 to fraction -\frac{35000}{10}.
\frac{-35000+1501}{10}
Since -\frac{35000}{10} and \frac{1501}{10} have the same denominator, add them by adding their numerators.
-\frac{33499}{10}
Add -35000 and 1501 to get -33499.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}