\quad \text { (2) } 2 m ^ { 2 } = 5 m - 5
Solve for m
m=\frac{5+\sqrt{55}i}{8}\approx 0.625+0.927024811i
m=\frac{-\sqrt{55}i+5}{8}\approx 0.625-0.927024811i
Share
Copied to clipboard
4m^{2}=5m-5
Multiply 2 and 2 to get 4.
4m^{2}-5m=-5
Subtract 5m from both sides.
4m^{2}-5m+5=0
Add 5 to both sides.
m=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4\times 5}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -5 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-5\right)±\sqrt{25-4\times 4\times 5}}{2\times 4}
Square -5.
m=\frac{-\left(-5\right)±\sqrt{25-16\times 5}}{2\times 4}
Multiply -4 times 4.
m=\frac{-\left(-5\right)±\sqrt{25-80}}{2\times 4}
Multiply -16 times 5.
m=\frac{-\left(-5\right)±\sqrt{-55}}{2\times 4}
Add 25 to -80.
m=\frac{-\left(-5\right)±\sqrt{55}i}{2\times 4}
Take the square root of -55.
m=\frac{5±\sqrt{55}i}{2\times 4}
The opposite of -5 is 5.
m=\frac{5±\sqrt{55}i}{8}
Multiply 2 times 4.
m=\frac{5+\sqrt{55}i}{8}
Now solve the equation m=\frac{5±\sqrt{55}i}{8} when ± is plus. Add 5 to i\sqrt{55}.
m=\frac{-\sqrt{55}i+5}{8}
Now solve the equation m=\frac{5±\sqrt{55}i}{8} when ± is minus. Subtract i\sqrt{55} from 5.
m=\frac{5+\sqrt{55}i}{8} m=\frac{-\sqrt{55}i+5}{8}
The equation is now solved.
4m^{2}=5m-5
Multiply 2 and 2 to get 4.
4m^{2}-5m=-5
Subtract 5m from both sides.
\frac{4m^{2}-5m}{4}=-\frac{5}{4}
Divide both sides by 4.
m^{2}-\frac{5}{4}m=-\frac{5}{4}
Dividing by 4 undoes the multiplication by 4.
m^{2}-\frac{5}{4}m+\left(-\frac{5}{8}\right)^{2}=-\frac{5}{4}+\left(-\frac{5}{8}\right)^{2}
Divide -\frac{5}{4}, the coefficient of the x term, by 2 to get -\frac{5}{8}. Then add the square of -\frac{5}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-\frac{5}{4}m+\frac{25}{64}=-\frac{5}{4}+\frac{25}{64}
Square -\frac{5}{8} by squaring both the numerator and the denominator of the fraction.
m^{2}-\frac{5}{4}m+\frac{25}{64}=-\frac{55}{64}
Add -\frac{5}{4} to \frac{25}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m-\frac{5}{8}\right)^{2}=-\frac{55}{64}
Factor m^{2}-\frac{5}{4}m+\frac{25}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{5}{8}\right)^{2}}=\sqrt{-\frac{55}{64}}
Take the square root of both sides of the equation.
m-\frac{5}{8}=\frac{\sqrt{55}i}{8} m-\frac{5}{8}=-\frac{\sqrt{55}i}{8}
Simplify.
m=\frac{5+\sqrt{55}i}{8} m=\frac{-\sqrt{55}i+5}{8}
Add \frac{5}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}