Solve for a (complex solution)
a\in \mathrm{C}
b=\frac{3x_{1}-3}{2}\text{ and }±1+3=0
Solve for a
a\in \mathrm{R}
b=\frac{3x_{1}-3}{2}\text{ and }±1+3=0
Solve for b
b=\frac{-a\left(±1\right)+3x_{1}-3a-3}{2}
Share
Copied to clipboard
\left(±1\right)a+3a=3x_{1}-3-2b
Subtract 2b from both sides.
\left(±1+3\right)a=3x_{1}-3-2b
Combine all terms containing a.
\left(±1+3\right)a=3x_{1}-2b-3
The equation is in standard form.
\frac{\left(±1+3\right)a}{±1+3}=\frac{3x_{1}-2b-3}{±1+3}
Divide both sides by ±1+3.
a=\frac{3x_{1}-2b-3}{±1+3}
Dividing by ±1+3 undoes the multiplication by ±1+3.
\left(±1\right)a+3a=3x_{1}-3-2b
Subtract 2b from both sides.
\left(±1+3\right)a=3x_{1}-3-2b
Combine all terms containing a.
\left(±1+3\right)a=3x_{1}-2b-3
The equation is in standard form.
\frac{\left(±1+3\right)a}{±1+3}=\frac{3x_{1}-2b-3}{±1+3}
Divide both sides by ±1+3.
a=\frac{3x_{1}-2b-3}{±1+3}
Dividing by ±1+3 undoes the multiplication by ±1+3.
2b+3a=3x_{1}-3-\left(±1\right)a
Subtract \left(±1\right)a from both sides.
2b=3x_{1}-3-\left(±1\right)a-3a
Subtract 3a from both sides.
2b=-a\left(±1\right)-3a+3x_{1}-3
Reorder the terms.
2b=-a\left(±1\right)+3x_{1}-3a-3
The equation is in standard form.
\frac{2b}{2}=\frac{-a\left(±1\right)+3x_{1}-3a-3}{2}
Divide both sides by 2.
b=\frac{-a\left(±1\right)+3x_{1}-3a-3}{2}
Dividing by 2 undoes the multiplication by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}