Solve for g (complex solution)
\left\{\begin{matrix}g=-\left(\frac{h}{v}\right)^{2}\left(\pi hr-c^{2}\right)\text{, }&v\neq 0\\g\in \mathrm{C}\text{, }&v=0\text{ and }\left(r=\frac{c^{2}}{\pi h}\text{ or }h=0\right)\end{matrix}\right.
Solve for g
\left\{\begin{matrix}g=-\left(\frac{h}{v}\right)^{2}\left(\pi hr-c^{2}\right)\text{, }&v\neq 0\\g\in \mathrm{R}\text{, }&v=0\text{ and }\left(r=\frac{c^{2}}{\pi h}\text{ or }h=0\right)\end{matrix}\right.
Solve for c (complex solution)
\left\{\begin{matrix}c=-\sqrt{\pi hr+\left(\frac{v}{h}\right)^{2}g}\text{; }c=\sqrt{\pi hr+\left(\frac{v}{h}\right)^{2}g}\text{, }&h\neq 0\\c\in \mathrm{C}\text{, }&\left(g=0\text{ or }v=0\right)\text{ and }h=0\end{matrix}\right.
Share
Copied to clipboard
gv^{2}=-\left(\pi rh^{3}-c^{2}h^{2}\right)
Subtract \pi rh^{3}-c^{2}h^{2} from both sides. Anything subtracted from zero gives its negation.
gv^{2}=-\pi rh^{3}+c^{2}h^{2}
To find the opposite of \pi rh^{3}-c^{2}h^{2}, find the opposite of each term.
v^{2}g=c^{2}h^{2}-\pi rh^{3}
The equation is in standard form.
\frac{v^{2}g}{v^{2}}=\frac{h^{2}\left(c^{2}-\pi hr\right)}{v^{2}}
Divide both sides by v^{2}.
g=\frac{h^{2}\left(c^{2}-\pi hr\right)}{v^{2}}
Dividing by v^{2} undoes the multiplication by v^{2}.
gv^{2}=-\left(\pi rh^{3}-c^{2}h^{2}\right)
Subtract \pi rh^{3}-c^{2}h^{2} from both sides. Anything subtracted from zero gives its negation.
gv^{2}=-\pi rh^{3}+c^{2}h^{2}
To find the opposite of \pi rh^{3}-c^{2}h^{2}, find the opposite of each term.
v^{2}g=c^{2}h^{2}-\pi rh^{3}
The equation is in standard form.
\frac{v^{2}g}{v^{2}}=\frac{h^{2}\left(c^{2}-\pi hr\right)}{v^{2}}
Divide both sides by v^{2}.
g=\frac{h^{2}\left(c^{2}-\pi hr\right)}{v^{2}}
Dividing by v^{2} undoes the multiplication by v^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}