Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

\frac{\pi r^{2}}{\pi }=\frac{95}{\pi }
Divide both sides by \pi .
r^{2}=\frac{95}{\pi }
Dividing by \pi undoes the multiplication by \pi .
r=\frac{95}{\sqrt{95\pi }} r=-\frac{95}{\sqrt{95\pi }}
Take the square root of both sides of the equation.
\pi r^{2}-95=0
Subtract 95 from both sides.
r=\frac{0±\sqrt{0^{2}-4\pi \left(-95\right)}}{2\pi }
This equation is in standard form: ax^{2}+bx+c=0. Substitute \pi for a, 0 for b, and -95 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\pi \left(-95\right)}}{2\pi }
Square 0.
r=\frac{0±\sqrt{\left(-4\pi \right)\left(-95\right)}}{2\pi }
Multiply -4 times \pi .
r=\frac{0±\sqrt{380\pi }}{2\pi }
Multiply -4\pi times -95.
r=\frac{0±2\sqrt{95\pi }}{2\pi }
Take the square root of 380\pi .
r=\frac{95}{\sqrt{95\pi }}
Now solve the equation r=\frac{0±2\sqrt{95\pi }}{2\pi } when ± is plus.
r=-\frac{95}{\sqrt{95\pi }}
Now solve the equation r=\frac{0±2\sqrt{95\pi }}{2\pi } when ± is minus.
r=\frac{95}{\sqrt{95\pi }} r=-\frac{95}{\sqrt{95\pi }}
The equation is now solved.