Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

\frac{\pi r^{2}}{\pi }=\frac{78.54}{\pi }
Divide both sides by \pi .
r^{2}=\frac{78.54}{\pi }
Dividing by \pi undoes the multiplication by \pi .
r^{2}=\frac{3927}{50\pi }
Divide 78.54 by \pi .
r=\frac{3927}{5\sqrt{7854\pi }} r=-\frac{3927}{5\sqrt{7854\pi }}
Take the square root of both sides of the equation.
\pi r^{2}-78.54=0
Subtract 78.54 from both sides.
r=\frac{0±\sqrt{0^{2}-4\pi \left(-78.54\right)}}{2\pi }
This equation is in standard form: ax^{2}+bx+c=0. Substitute \pi for a, 0 for b, and -78.54 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\pi \left(-78.54\right)}}{2\pi }
Square 0.
r=\frac{0±\sqrt{\left(-4\pi \right)\left(-78.54\right)}}{2\pi }
Multiply -4 times \pi .
r=\frac{0±\sqrt{\frac{7854\pi }{25}}}{2\pi }
Multiply -4\pi times -78.54.
r=\frac{0±\frac{\sqrt{7854\pi }}{5}}{2\pi }
Take the square root of \frac{7854\pi }{25}.
r=\frac{3927}{5\sqrt{7854\pi }}
Now solve the equation r=\frac{0±\frac{\sqrt{7854\pi }}{5}}{2\pi } when ± is plus.
r=-\frac{3927}{5\sqrt{7854\pi }}
Now solve the equation r=\frac{0±\frac{\sqrt{7854\pi }}{5}}{2\pi } when ± is minus.
r=\frac{3927}{5\sqrt{7854\pi }} r=-\frac{3927}{5\sqrt{7854\pi }}
The equation is now solved.